NAVAL POSTGRADUATE SCHOOL

AD-A225 434

THESIS

EPLD MODELING WITH VHDL
by
Shih-Ming Shu

December 1989

Thesis Advisor: Chin-Hwa Lee

Approved for public release; distribution is unlimited

Unclassified

security classification of this page

REPORT DOCUMENTATION PAGE

la Repon. Security Classificauon Unclassified 1b Restricuve Markings
2a Security Classification Authornty 3 Distribution Availability of Report
2b Declassification Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performung Orgamization Report Numberi(s) 5 Monmtoring Organization Report Number(s®
%a Name of Performing Organization 6b Office Symbol 7a Name of Monnoring Organization
Naval Postgraduate School (if applicable) 62 Naval Postgraduate School
6¢ Address (ciry, state. and ZIP ccde) 7b Address (city, siate, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
82 Name of Funding Sponsoring Organizauon | 8b Office Symbol 9 Procurement Instrument Identification Number

(If applicable!
8¢ Address (city. state, and ZIP code) 10 Source of Funding Numbers

Program Element No] Project No lTask No 1Work Unit Accession No

11 Title cinchede securiny classincasons EPLD MODFEFLING WITH VHDL

12 Persenal Author(s) Shih-Ming Shu

132 Type of Repert 13b Time Covered 13 Date of Report (year, month. day 15 Page Count
Master's Thesis From To Decmber 1989 133

16 Supplementary Notatorn The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.

17 Cesat Codes 1& Subject Terms (continue on reverse if necessary and identify by block number
J td h P

Freld Greup subzroup | VHDLHDL HARD WARE DESCRIPTION LANGUAGE.EPLD.PLA.

19 Abstract cconinue on reverse if necessary and idendisv by block number)

Incompatibility between separately-designed subsystems has long been a problem in the logic design industry. This
problem greatly affects the productivity of logic design procedures. It also makes svstem maintenance and second source
procurement very difficult. The military and IEEE 1076 standard hardware description language VHDL is a promising sol-
ution 1o this problem. In this thests. the VHDL language was used to model an industry-wide popular device -- erasable
programable logic device (EPLD). The EPLD modeling problems are discussed via the modeling of two EPLD chips, EP310
and EPISO00 The solutions to these problems are described and tested. The goal of this thesis is to provide examples of
VHDI coding techniques related to the EPL D modeling. These coding techniques with the associated EPLD library can
be used to support future system level logic desien. .

I Distnbution Avaiability of Abstract 21 Abstract Secunty Classification

N unctesefied unbmied 7 same as report 0 DTIC users Unclassified

SZa Name of Responsitie Individual 225 Teiephione i qede Ared codes 2l Omrce Symib

Chin-Hwa | ee 140%) 63A-2190 62l e

DD FORNM 147383 \AR 83 APR edition may Le used unti oxiiacnied securiy Slassvation of thus page

All other editions are obcowte

Unclassihed

Approved for public release; distribution is unlimited.
EPLD Modeling with VHDL

by

P

Shih-Ming Shu
Lieutenant, Taiwan Republic of China Navy
B.S., Chinese Naval Academy 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
Decmber 1989

Author: W % f{
[24

Shih-Ming Shu

Approved by: A‘/:%/ ji ’

Chin-Hwa Lee, (esxs Advisor

Jon T. Butler, Second Reader

AV’&GGM

John P. Powers, Chairman,
Departmcm of Electrical and Computer Engineering

ABSTRACT

-

I

Incompatibility between separately-designed subsystems has long been a problem in
the logic design industry. This problem greatly affects the productivity of logic design
procedures. It also makes system maintenance and second source procurement very
difficult. The military and IEEE 1076 standard hardware description language VHDL
1s a promising solution to this problem. In this thesis, the VHDL language was used to
model an industry-wide popular device -- erasable programable logic devi_ce (EPLD).
The EPLD modeling problems are discussed via the modeling of two‘EPLD éhips,
EP310 and EP1800. The solutions to these problems are described and tested. The goal
of this thesis 1s to provide examples of VHDL coding techniques related to the EPLD

modeling. These coding techniques with the associated EPLD library can be used to

support future svstem level logic design.
~—

t
!

‘! s} O ‘
i SO0 0 1o W |
! N
: !
by

' D o/

n L

v ovv Cedes

T aLii/or

Y 2lal

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While every effort has been made, within
the time available, to ensure that the programs are free of computational and logic er-
rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

v

TABLE OF CONTENTS

L INTRODUCTION et e 1
A. VHSIC HARDWARE DESCRIPTION LANGUAGE (VHDL) 1
B. ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD) 2
C. EPLD MODELING .. ettt ettt e e e e e e 3

II. VHDL FEATURE AND ENVIRONMENT 5
A. BASIC FEATURESOF VHDL i, 5

. DESIGNENTITIES ...\ttt ciieenl S
2. CONCURRENT STATEMENTS 11
a. BLOCK STATEMENT s 11

b. PROCESS STATEMENT i, 14

3. DATA TYPES ..o e 14
4. CLASSOF OBJECTS ... o e e 19
2. CONSIanIS ... e e 19

b. Variables 19

C. SIgnals . 20

S, ATTRIBUTES e 22
6. SUBPROGRAM AND PACKAGES 23
7. OPERATORS AND CONTROL STATEMENTS 26
B. VHDL SUPPORTING ENVIRONMENT it 28
1. SIMULATION PROCEDURE o i it 30
2. REPORT GENERATOR 32
3. VHDL LIBRARY SYSTEM (VLS) i 33

HI. MODELINGTHEEP3IO i 35

A. INTRODUCTIONOF THEEP310, 35
B. DEFINETHE PROBLEM i i, 39
C. DECOMPOSITIONOFTHEEP310 39
D. ESTABLISH DATA FLOW i i 40
E. SIGNAL ASSIGNMENT ... 43
F. JEDEC FILE INFORMATION TRANSFER 44
G. MULTIPLE LEVEL LOGIC i 46
H. BUSSED SIGNAL . 47
I. PRODUCT TERM INTERNAL CONNECTION el 49
J. EPLD TIMING SIMULATION 51
I. REGISTERTIMING e 52

K. COUNTER . e 57
IV, MODELING THE EPI800 i e i 58
A. INTRODUCTION OF THEEPIS800 58
B. DECOMPOSITIONOF THE EPIS0Oo i . 61
C. ESTABLISH DATA FLOW OF THE MODEL 62
D. GENERAL MACROCELL AND ENHANCED MACROCELL 66
E. THE REUSABLE QUADRANT MODEL 66
F. THE EPI800 BUS STRUCTURE i, 68
G. UPDOWNCOUNTER e 69
V. CONCLUSIONS o 71
A, GENLERAL 71
B. PROGRAM SPELD i 72

vi

C. RCCOMMENDATIONS FOR FUTURE STUDY 73

APPENDIX A. VHDL SOURCE CODE FOR EP310 AND EP1800 MODELS . 74

A. VHDL SOURCE CODE FOR EPLD_PACKAGE 74
B. VHDL SOURCE CODE FOREP3IOMODEL 77
C. VHDL MODEL FOREPI800. i, 85
APPENDIX B. VHDL CODE FORTEST BENCH 97
A. VHDL SOURCE CODE FOR TOP ENTITY DECLARATION. 97
B. TEST_BENCH ARCHITECTURE BODY FOREP310 98
C. TEST_BENCH ARCHITECTURE BODY FOR EPI1800 103

APPENDIX C. EXAMPLES OF SIGNAL SELECT FILE AND SIGNAL MAP

58 P 108
A. SIGNAL SELECT FILE ... i 108

B. SIGNAL MAP OF THE TEST_EP3 MODEL 109
APPENDIX D. MACRO VAX'VMS SYSTEM COMMAND oo 19

Ao MACRO VAX VMS SYSTEM COMMAND FFOR EP310 MODEL 119
B. MACRO VAN VMS SYSTEM COMMAND FOR EP1800 MODEL ... 120

LIST OF REFERENCES ... o 121

INITIAL DISTRIBUTION LIST ... e 125

Vil

LIST OF TABLES

Table 1. ATTRIBUTE VALUES e e e s it e i 23

Table 2. VHDL OPERATORS ... it e e e e e e 27

Table 3. VHDL CONTROL STATEMENTS ... i 27
Vil

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

LIST OF FIGURES

. Scheme for various architectural bodiesinoneentity
. Full adder gate structurecci ittt
. Full_Adder VHDL structural description

. Description of and_gate componentcouuiiiineean.

. Description of or_gate componentc.uuuiinini.n
. Description of xor_gate component [IERFREE
. Example of nested blocks e
. Dlatch block diagram
. Example of D latch using guarded block
. Process statement e e
. VHDL data tyvpe classification scheme
Signal assignment eXamplc o 21
. Multiple signal drivers and resolution function 22
4. Packageexample i EERREERE 24
. VHDL support environmentoooon... L L2
. Simulation procedure ... e R
. BLOCK diagram of EPLD design environment 36
. EP310 block diagram e 37
. EP3l0Omacrocell ... 38
. Decomposcd EP310 hierarchical block diagram 42
. 1 O primitive signal flow diagram 47
. EPLD timing block diagram 5
LP310 hicrarchical block diagram with time parameter 3

1X

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

24. D register timing dlagramo i 54
25. Hold time timing diagramt 56
26. EP180U block diagram ... 59
27. Local macrocell e 60
28. Global macrocell e 6l
29. EPI1800 hierarchical model diagram 63
30. EPI800 chip overview 64
31. 16 bit up down counter block diagram, 70
X

ACKNOWLEDGEMENTS

[would like to express my gratitude to my Thesis Adviser, Professor Chin-Hwa Lee,
for his advice and assistance in completion of this thesis.

I would also like to thank Professor J.T. Butler and others who contributed their
assistance in the accomplishment of this thesis.

Finally, I wish to express my gratitude to my parents whose love and affection has

been the force thiat helped me to achieve this goal of education.

Xi

I. INTRODUCTION

A. VHSIC HARDWARE DESCRIPTION LANGUAGE (VHDL)

While system standards such as the Unix and the X Winuow System continue to be
refined and redefined, significant application-level standards are emerging. On one hand,
there 1s explosive growth of electronic computer-aided engineering (CAE) and
computer-aided design (CAD). On the other hand, because of the lack of a standard,
numerous dissimilar and incompatible CAE'CAD databases have proliferated.

New circuit designs inevitably will adopt part of old designs which were proven to
be applicable even with a device technology break-through. Because of the large number
of vendor-specific CAE‘CAD formats. tools, and languages, the portabiiity of designs
are difficult, if not impossible. Consequently, designers tend to redevelop their designs
in the new working environment rather than port the existing designs from another in-
compatible working environment. Different formats and tools continue to grow. It
causes system design to be even more ineflicient. The need for an industrv standard is
apparent.

When the Department of Defense launched the Very High Speed Integrated Circuit
(VHSIC) project, it was confronted with the problems mentioned above. [Furthermore,
since most of the government systems tend to have a long service life, the last svstem
on a given program mught well be delivered fifteen vears after the first production ship-
ment. Both would be expected to remain in operation for at Icast ten vears from that
point in time. Technology, on the other hand, is irrevocably non-static. Technology
used in the first delivery would be something quite different from those of twentv-five

vears later. Yet, the operating svstems and their maintenance require compatible re-

placement of components. Standardization, if it could accomplish this, could also assist
in the procurements from second sources [Ref. 1].

In the early stage of the VHSIC program, an idea arose that these problems might
be resolved through the development of a standard hardware description language
(HDL). A program was launched in August of 1983 for the development of a VHSIC
Hardware Description Language (VHDL) [Ref. 1].

The goal of the program was to develop a language which could simultaneously
function as a design automation tool interface and as a mechanism for documenting the
design of a transportable electronic system and its components.

In August 1983, version 7.2 of the language was released by the Department of
Defense. After the release of version 7.2, the IELE sponsored the standardization. The
goal was the development of an improved standard of the language. The review process
was completed by Mav 1987 and the language reference manual (LRM) was released for
industrial review. In December 1987 VIHIDL was accepted as IEEE-STD-1076-1987.

Initially, the VHDL was geared toward svstem-level design and documentation.
However, after the design of the language has received inputs from manv individuals in
the computer industry, the VIIDL offers not only behavioral constructs [Ref. 2] but also
register transfer-level (RTL) and structural (i.e., gate level) constructs. The ;Jscr thus can

describe a circuit at the register and the gate Jevels as well as the behavioral level.

B. ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)

To achieve improved system performance in the marketplace, more and more man-
ufacturers have sought higher levels of integration (functional density) for the electronic
components in the design. This led to various forms of custom chips. Yet, the custom

chips design has the following problems:
1. Development lead times are relatively long.

2. Design cost are significant.

3. Inventory is dedicated to a specific application which is expensive. This prohibits
adequate second sources.

- 4. Design changes in midstream are not allowed due to lead time and inventory con-
straints.

The concept of the erasable programmable logic device (EPLD) is to provide the
user the benefits of large scale integration circuit without the drawbacks of full custom
chips. The benefits of such parts include off-the-shelf availability, minimal design costs,
multiple sourcing from distributors, and flexible interchangeable inventory.

The EPLD basically consists of two parts. The first part is the conventional pro-
grammable arrayv logic (PAL) structure. The second part is a user-conﬁgurabl'c [0
control architecture. Inside the 1.O control architecture there are si'gnél path, select
switches, and flip-flops.

With improved techniques. the speed and functional density of EPLD’s are getting
faster and higher. This makes the EPDL even more attractive. It is believed that more

special purpose logic designs will use EPLD 1n place of the custom chips.

C. EPLD MODELING

In this study the VHDL language is used to model two EPLD chips, to find out
what Kind of problems will be encountered when modeling this type of, chi.ps. and to
propose the VIIDL solutions to these problems. |

The best way to describe the EPLD is at a register transfer level. In this study the
register transfer level models are used to simulate both the EP310 and the EP1800.
These devices are EPLD with approximately 300 and 2100 gates, respectively.

A general introduction of the VHDL language and its working environment is the
main subjects of Chapter 1. In Chapter 111 the structure of a small scale EPLD, EP310,
1s first introduced. It is followed by a general introduction of the EPLD’s design envi-
ronment. Then, the specific problems encountered in modeling the LP310 chip are dis-

cussed. Chapter IV introduces the modeling of a large scale LPLD, EPIS00. The

advantage and disadvantage of using the VHDL language in modeling a digital circuit
design is discussed in Chapter V. At the end, Appendix A contains the VHDL source
codes for the EP310 and tuc EP1800 models. Appendix B contains two simulation ap-
plication VHDL sources files and their results. Appendix C contains an example of the
signal select file used in the VHDL supporting environment and a signal map example
which is produced by the VHDL supporting environment. Appendix D contains the
procedures of constructing the EP310 model and the EP1800 model in the VHDL 1076

standard supporting environment installed at the Naval Postgraduate School.

II. VHDL FEATURE AND ENVIRONMENT

A. BASIC FEATURES OF VHDL

This chapter constitutes a brief introduction of the VHDL. The advanced features
of the VHDL and corresponding examples related to the EPROM modeling will be in-
troduced later when theyv are encountered.

1. DESIGN ENTITIES

In VHDL, a given section of a logic circuit is represented as a design entity. The
logic circuit represented can be as complicated as an entire system or as simple as an
AND gate. A design entity is defined by an entity declaration together with one or .more
corresponding architecture bodies as shown in Figure 1.

An entity declaration basically defines the interface between a given design en-
tity and the environment in which it is used. The actual relationship between these in-
puts and outputs is specified in the architectural body. This body can specifv the
behavior of the entity directly such as a primitive body. The architectural bodv can also
be structurally decomposed into simpler components. As shown in Figure 1, “Architec-
ture A” is decomposed into smaller components. Each one of the components is an
entity itself, and were binded to the “Architecture A” by “configuration specifications”.

Hlustrated below is an example that shows the basic features of an entityv dec-

laration.

entity FULL_ADDER is
generic(sum_delay,carry_delay: TIME:=25ns);
port(x,y,cin: in BIT;z,cout: out BIT);

end FULL_ADDER:

Entity

firchitecture
A B C D

Component declaration
®
® . : Binding by
Component declaration configuration
© specifications
©

Entity

Architecture

Figure 1. Scheme for various architectural bodies in one entity

6

The entity name of the above example is "FULL_ADDER" and its ports are "x", “v”,
“cin”, “2”, and “cout”. Each port has an associated mode, which identifies input, output,
and an associated tyvpe. In this case, all the signals have the same signal type, i.e., BIT.

The terms portr and generic in the entity declaration above serve as the interface
of the module. Port is used to pass the declared signals from external entity into the
module. Generic is used to pass the parameters from the external entity into the module.
With generic as an interface, it is possible to reuse a design entity whenever practical.
For example, generic can be used to pass a faster delay parameter to the module to
simulate a faster device. If the variable of a generic appear in a conditional signal as-
signment statement, then the behavior of the design entitv may be changed by changing
the value of that generic variable.

Given the entity interface it is also necessary to specify what the

"FULL_ADDER" does in an architectural body. An example is shown below:

architectural Data_Flow of FULL_ADDER is
begin
2<=x xor y xor cin after 20ns;
cout<=(x and y)or(x and cin) or(y and cin) after 25ns;.

end Data_Flow;

The structural body used in the above example is a behavioral description not
involving the actual physical device. In most of the cases, the behavioral description

model is the first step in building a real svstem.

loc 1

ﬂ coul
cin _

loc2

AN P

Al

sum

fec3

Figure 2. Full adder gate structure

As mentioned before, a single entity may have several architcctures corre-
sponding to diflerent ways of realizing the entity. Figure 2 is a physical structuie of the

“TULL_ADDER", and I'igure 3 is the structural realization of it in VIIDL.

architectural STRUCTURAL of FULL_ADDER is
begin
component and_gate
generic (delav: TIME := 5ns);
port {a.b:in BIT;c out BIT});
end component;
component xor_gate
generic (delay: TIME := 5ns);
port (a,b:in BIT;c out BIT);
end component;
component or_gate
generic (delav: TIME := 5ns),
port (a.b:in BIT:c out BIT);
end component;
signal locl. loc2, loc3: BIT;
begin
XIl:xor_gate port map: (x.v.locl);
X2:xor_gate port map: (locl.cin,sum);
Al:and_gate port map: (cin,locl.loc2);
A2:and_gate port map: (x,v.loc3):
Ol:or_gate port map (loc2.loc3, cout);
end STRUCTURAL;

Figure 3. Full_Adder VHDL structural description

entity and_gate is
generic (deluv: TIME : = 5ns);
port (a.b: in BIT; c: out BIT),
end

architecture BEIHHAVIOR of and_gate is
begin

¢ <= aandb;
end BEHAVIOR;

Figure 4. Description of and_gate component

entity or_gate is
generic (delay: TIME : = 5ns),
port (a,b: in BIT; c: out BIT);
end

architecture BEHAVIOR of or_gate is
begin

¢ <= aorb;
end BEHAVIOR,

Figure 5. Description of or_gate component

entity xor_gate is
generic (delay: TIME : = 5ns);
port (a,b: in BIT; c: out BIT);
end
architecture BEHAVIOR of xor_gate is
begin
¢ <= axorb;
end BEHAVIOR;

Figure 6. Description of xor_gate component

Three components, Xor_gate, and_gate, and or_gate, arc declared in the decla-
ration section of the architecture "STRUCTURAL" in Figure 3. The port specification
used in the components of the "FULL_ADDER" indicates that there are two input sig-
nal “a”, "b", and an output signal "c¢”. The entity of these components have the identical

port specifications as the "FULL_ADDLER” dose. (see Figure 4. Figure 5, and

Figure 6). Three signals locl, loc2, and loc3 are also declared in the "FULL_ADDER".
These declared signals are l_ocal signals, which are visible only inside the
"FULL_ADDER" entity.

In the "FULL_ADDER" entity, five components are instantiated after the key
word begin; that is, five specific instances of general component entities are created. In
each instantiation, there is a unique label associated with it (i.e., X1, X2, Al, A2, and
O1l) as well as a port map. The generic map is optional. If the generic map is not stated
in the instantiation, the assigned default value will be used. In the above case, since all
the component instantiations does not state their generic map, the generics of the com-
ponents will use their default value, 1.e., five nanosecond delay.

The port map creates an association between the inputs outputs of the compo-
nent declaration and the signals in the instantiated components. In the
“FULL_ADDELR" case the association is “by position”. Named association can also be

used. which looks like the following:
Al: and_gate port map (c=>loc2, a=>cin, b=>cin);

2. CONCURRENT STATEMENTS

Some of the most important characteristics of the concurrent statements are
described in this section. Concurrent statements are used to define interconnected
blocks and processes that jointly describe the overall behavior or structure of a design
entity. Concurrent statements are executed asvnchronously with respect to each other.

a. BLOCK STATEMENT
The basic concurrent statement in VHDL 1s the block statement. The block
consists of the declaration section as well as an executable section. The executable sec-
tion can have all possible concurrent statements, which may include other block state-
ments. The architectural body of the entity itsclf is basicallv a block. Consider the

example shown in Figure 7. Here, the architectural body "BLOCK_STRUCTURE" can

be seen as an outer block. The block “A” under the “BLOCK_STRUCTURE" 1s its in-

ner block. In general. any number of nestings of blocks are possible. Note that in Fig-

ure 7 the text following the symbol “--~

executed.

are comments in VHDL and will not be

-- Outer Block Declaration Section

signal loc! : BIT;
begin
-- Outer Block Executable Section
locl < = x xor v after delay;
sum < = locl xor cin after delay;
A:block
-- Inner Block A Declaration Section
signal lacl,loc2,loc3,locd : BIT;

begin

locl <= X and v after delav;
loc2 < = v and cin after delav:
loc3 < = locl or loc2 after delav;
locd < = loc3 or locd after delav:
cout < = loc3 or locqd after delay;
end block A:
end BLOCK_STRUCTURE;

architecture BLOCK_STRUCTURE of FULL_ADDER is

-- Inner Block A Executable Section

Figure 7. Example of nested blocks

In VHDL, the block statement contains an optional guard expression. If

there is an expression immediately following the key word block, then an implcit signal

called guard with a tvpe BOOLEAN will be created. The value of guard is dependent

on the condition of the expression that follows the block. When a “guard condition”

becomes TRUE, it can enable certain types of statements inside the block. Byv using a

“guarded block” it is possible to model the operation of a synchronous circuit.

d
D type
flip-flop
CLK
CLR

Figure §. D latch block diagram

entitv D_Latch is
port{CLK.CLR,D:in BIT; Q,Q_not:out BIT);
end D_Latch;

architecture GULARDED_CLOCK of D_Latch is
begin
block(CLK="1"or CLR="1")
signal S: BIT;
begin
S < = guarded ‘0" when CLR="1"else
D:
Q < = S after 10ns:
Q_not < = not s after 10ns;
end block:
end GULARDLED_BLOCK;

Figure 9. Example of D latch using guarded block

A “guarded block” example is given by modeling the D latch as shown in
Figure §. This D latch will reflect the value of the input signal "d” when the clock

(CLK) 1s high. i.e., equal to "1I". The latch also contains an asvnchronous clear (CLR)

13

input. When CLR = I, the latch is reset. The asynchronous clear overrides the clock.
The corresponding latch model is shown in Figure 9. The block header expression
“(CLK="1"or CLR="1")" define the value of the implicit guard. The statements con-
tains the key word guarded will not be executed unless the value of guard is TRUE. In
the D latch case, if the guard is FALSE, the local signal S will remain the same value.
If the guard is TRUE and the CLR is a ‘1, then S will be assigned to ‘0’; otherwise S
will follow the input signal D. Note that the D latch illustrated above is a level-sensitive
device. It will be shown in Chapter 111 that the guard 1s not restricted to level-sensitive.
Edge-sensitive guard is available as well.
b. PROCESS STATEMENT
Another major modeling element in VHDL is the process. A protess state-
ment defines an independent sequential process. The process can represent the behavior
of some portion of a design. An example is shown in Figure 10. Note that the process
begin with the key word process(line). The parameter inside the parenthesis is called the
sensitivity list. Whenever the signal inside the sensitivity list change, the process is ac-
tivated and the statements within the process are executed.
3. DATA TYPES

The rype is an important feature of VHHDL. The VIIDL is strongly tvped, which
means that inadvertent mixing of types in an operation will be flagged as an error. The
strong typing features are very helpful for capturing the designer’s intent; thev also help
to check the design data-flow correctness.

A type 1s characterized by a set of values and a set of operations. A subiype is
a subset of the values of a type. The set of operations defined for a subtype include the
operations defined for the parent type: however, the assignment operation to an object

having a given subtype only assigns values that belong to the subtype.

14

process (linc)
begin

pulse <= "1 after Sns, ‘0" after [3ns,
end process;

! 1 { | | I |
{ f | | | I |
I I i i o ! I
1ine: L | 1 | 1 1]
' 1 I ! I] I
i I 1 ! I I I
! | | | { 1 {
| ! 1 | |
! ! | | t
pulise; [J | |] 1]
! | | | H |
| | l | . | l
| | | i | ! |
I | ' | | | |
[} 1) 1 1) 1
TIME(s) L +10 +20 + 20 + 40 +50 +60

Figwe 10, Process statement: (I'uisc Converter)

In the VIIDL the set of all integers are predelined as tvpe INTEGER, and all

positive integers are predefined as subtype POSITIVE in the following decliration
subtype FOSITIVE is INTEGER range 1 to INTEGER'HIGH;

Where the attribute ‘HIGH will vield the upper bound value of the INTEGER. Here,
with the key word range the subtype POSITIVE will have the same upper bound value
as the INTEGER has. According to the subtvpe operation ruje mentioned above, the
subtraction operation implied for INTEGER, may not be used in subtype POSITIVE,

because the subtraction of two positive numbers mayv produce a negative value.

TYPES

/

SCALAR COMPOSITE

ENUMERATION NUM E\ / \R’E(X)RD

RICAL PHYSICAL ARRAY

/\

REAL INTEGER

Figure 11. VHDL data type classification scheme: [From Ref. 3}

The "VHDL Language Reference Manual” gives a useful data tvpe classification
scheme which 1s ilustrated in Figure 11, Data tvpes are classified as scaiar (one-
dimensional) or composite (multidimensionall. The enwineration tvpe i.s the most fre-
quenty uscd scalar tvpes. For example. the predefined tvpe BIT 1s an enumeration tvpe,

which is defined as follows:
type BIT is ('0','1");
Numeric tvpes are either INTEGER or REAL. The REAL tvpe can be varv

useful in modeling an anlog-to-digital interface or a signal processing algorithm. Some

tvpe declaration examples are illustrated below:

type INDEX is range 0 to 9; --integer type.

type VOLTAGE is range 0.0 to 10.0; --real type.

Each of the type declared in above example has a range. The base type (i.e., either I'\-
TEGER or REAL) is implied by the values in the range.

The VHDL also provides the physical type, which is used to represent some
physical quantities (such as, time, voltage, and capacity). TIME is a predefined physical

tvpe in VHDL, and its declaration is shown below:

type TIME is range implementation_defined

units

fs; -- femtosecond
ps = 1000fs; -~ picosecond
ns = 1000ps; -- nanosecond
us = 1000ns; -- microsecond
ms = 1000us; -- millisecond
sec = 1000ms; -- second

min = 60sec; -- minute

hr = 60min; -- hour

end units;

Note that the base unit in TIME is femtoseconds {fs). Both the range and the base unit
are user selectable. But, the upper bound of the range cannot exceed the host machine
limit. With the range from 0 to 1E20, the TIME can represent up to 27.7 hours (100,000
second).

The Composite types are either array 1ypes or record 1ypes. Below is an array

tvpe declaration example:

type BYTE is array(0 to 7) of BIT;

17

As declared above, BYTE is an array type of eight array elements. BIT is the
base type of these array elements. [ndex range of the BYTE is constrained and is from

“0 to 7”. Another example with unconstrained index range is shown below:
type BIT_VECTOR is array(NATURAL range <>) of BIT;

The expression “NATURAL” in BIT_VECTOR above means that the index has a
subtype of natural number, i.e., non negative number. The symbol “ < >~ following the
key word range stands for an undefined range. The user must specify this range when
it is emploved. For example, BIT_VECTOR(0 to 7) for ascending range, or
BIT_VECTOR(7 downto 0) for descending range.

As the name implies, a record type is a composite type consisting of a number

of fields. For example, tvpe DATE could be defined as a record type as follows:

type DATE is
record
DAY : INTEGER range 1 to 31;
MONTH : MONTH_NAME;
YEAR : INTEGER range 0 to 3000;

end record;

The tvpe MONTH_NAME would be an enumeration type consisting of the names of
the months.

As mentioned before, the variable in VHDL are strongly tvped. and this means
that the objects with different types cannot be involved in the expression directly. An

example is illustrated as follows:

1R

~-- declaration part

signal A : BYTE := "00001111";

signal B : BIT_VECTOR(O to 7) := "11110000";
signal C : BYTE;

-- expression part

C <= A and B; -- this expression will NOT be accepted by VHDL

Although the A and the B all have eight bits, because they are different types, the VHDL
will not accept the expression shown in the above example. Note that in the declaration
part, the signal A 1s assigned with an initial value via the symbol ":=" immediately fol-
lowing the type.
4. CLASS OF OBJECTS
In VHDL there arc three classes of objects: constant, signals, and variables.
a. Constants
A constant is an object whose value may not be changed. Some examples

of constant declarations are:

constant PI : REAL :=3. 1416;

constant MESSAGE : STRING(1 to 13) := "demonstration';

Notc that each constant declaration must includes the name, the type, and the valuc of
the constant.
b. Variables
Variables are objects whose values can be changed. When a variable is
created by a declaration, a container for the object is created along with it. Variables

are changed by executing a variable assignment statement: for example,

A:=B +

Variable assignment statements have no time dimension associated with them, i.e., their
effect is felt immediately. Thus, variables have no direct hardware correspondence. But,
they are useful in algorithmic representations. Some examples of the variable declara-

tions are:

variable FLAG : BOOLEAN := TRUE;

variable COUNT : INTEGER := 0;

The variable declarations specify the name, type, and optionally an initialization value
for the variable. Variables used in a process block are considered to be staric; that is, the
value of the variable 1s maintained by the simulator until it is changed by a variable as-
signment statement.
c. Signals
Signals are objects whose values may be changed, and the execution has a
time dimension. Signal values are changed by signal assignment statements. The signal
assignment statements arc evaluated whenever one of the night hand elements of the
statements changed its value. An example is shown in Figure 12. Note that the signal
assignment statement uses the “< =" symbol in order to differentiate it {rom the vari-
able assignment statement. The "after 10ns” 1n Figure 12 means that the “local” will take
on its new value 10 ns later from the present simulation time. If the signal assignment
statement has no after clause. then it is equivalent to "after Uns”".
All the signal assignment statements in the same process level are concur-
rently executed in the same simulation cvcle. Consequently, the positions of the signal
assignment statements in the same process level are irrelevant. Thus, the signal assign-

ment statements in Figure 12 can also be rewritten as

d <= local and c;

local <= a and b after 10 ns;

a Al local

|

A2 d

--signal assignment statement
local < = a and b after 10ns;
d <= local and c;

Figure 12. Signal assignment example

One of the difference between variables and signals is that signals can have
multiple queuing containers called drivers. The value of the signal is a function of all the
related drivers. An example related to multiple drivers is shown in Figure .13. In the
figure two signal assignment statements A and B assign values to the same signal X.
For each signal assignment, a driver is created to hold the result of that assignment. In
this example, drivers are labeled Dax and Dbx. The value of the signal X is determined
by a resolution function F in this example. The resolution function F is user defined. It
is activated whenever the drivers receive new values. The value of the signal 1s updated
to the new value that coming from the resolution function. In Chapter 111, the use of

a resolution function to model the EP310 will be shown.

Signal assignment A

A DaX f— — — — X - M;

/

Function /
/
X a— | F " Drivers
. . \ . ‘
Signal . l Signal assignment B
\

Doux 4= — — 1 X —=— N;

Figure 13. DMultiple signal drivers and resolution function: [From Refl. 3]

5. ATTRIBUTES

J

An arribute defines and evaluates some characteristics of a nomed object. Some
attributes are predefined and are related to types, ranges, values. signals, or. functions
[Refd: pp.3-14,15]. Signal attributes are particularly important in modeling. Some

predefined signal attributes arc shown in the following exampies:

l. SEVENT rcturns a BOOLEAN value. If an event has occurred on S during the
current simulation cvcle the returned value is TRUE: otherwise, it returns the value
FALSE.

S'STABLE(T) is of type BOOLEAN. Itis TRUE if S has been stable for the last
T time units. If T is zero, it is written as SSTABLE.

r

3. SSDELAYED(T) is the value of S, T time units earlier. It has the same type as S.

These attributes are useful in detecting signal changes and will be used in the later

chapters.
Another useful set of attributes are those associated with arravs. For example,

suppose that an array variable was defined as follows:

variable A : BIT_VECTOR (0 to 15);

Table 1. ATTRIBUTE VALUES

Attribute Value
A'RANGE 0Oto s
A'LENGTH 16

ALEFT 0
A'RIGHT 15

Then. the set of attributes of variable A would have values indicated in Table 1. Manv
other uscful attributes are defined in the "VIIDL Language Reference Manual.” [Refl.
4: pp.14-1.9]
6. SUBPROGRANM AND PACKAGES
Subprograms define algonithms for computing values or exhibiting certain be-
havior. There are two forms of subprogram: procedures and functions. A procedure call
is a statement; a function call is an expression that returns a value. The definition of a

subprogram can be given in two parts:

I. A\ subprogram declaration defining its calling conventions.

2. A subprogram body defining its execution.

Packages, like subprogram, may be defined in two parts. A package declaration
defines the visible contents of a package: a package body provides the hidden details. In
particular. a package body contains the bodies of all subprograms declared in the pack-

age decluration.

package Multiplication is
tvpe BIT_ARRAY is (INTEGER range < >) of BIT;
function BitArrav_Int (bits: BIT_ARRAY) .return NATURAL;
function Int_to_BitVec (int, length: NATURAL) return BIT_ARRAY;
procedure Obtain_Product (a.b: in BIT_ARRAY;
c: out BIT_ARRAY;
ov: out BIT);
------ other declarations

end Multiplication;

package body Multiplication is
function BitArrav_to_Int (bits: BIT_ARRAY) return NATURAL is
variable result: NATURAL :=0",
begin
for 1 in bits’ RANGE loop
result : = result 2.
if bits(i) = 1" then
result : = result +1;
end if;
end loop:
return result;
end BitArray_to_Int;

procedure Obtain_Product(a.b: in BIT_ARRAY;
c:out BIT_ARRAY;,
ov: out BIT) is
variable local: INTEGLER:
constant limit: INTEGER := 2 * a’LENGTH;
begin
local := BitArrav_to_Int(a) BitArray_to_Int(b)
if local > limit-1 then
local : = local mod limit;

ov:= "1,
else

ov:= "0,
end if;

c:=Int_to_BitArrayv(local, a’ LENGTH);
end Obtain_Product;

end Multiplication;

Figure 14. Package example

Shown in Figure 14 is a package consisting of a type declaration and the inter-
faces for two functions and a procedure. The code for the functions and the procedure
are given in the package body. If a package contains no subprograms, a package body
1s not required. The package can be accessed by placing a use clause before the interface
description of an entity. For example, if there is a entity called MULTIPLERS need to
use the procedure Obtain_Product inside the Multiplication package in Figure 14. One

could do this as follows:

use WORK.Multiplication
entity MULTIPLERS is
port (a,b: i: BIT_ARRAY(O to 7);
prod: out BIT_ARRAY (0 to 7);
ov: out BIT);

end MULTIPLERS;

architecture BEHAVIORAL of MULTIPLERS is
begin
process (a,b)
variable c¢: Multiplication.BIT_ARRAY (a'RANGE);
variable loc: BIT;
bigin
Multiplication.QObtain_Product (a,b,c,loc);
prod <= ¢ after 100ns;
ov <= loc after 100ns;
end process;

end BEHAVIORAL;

o
)

Note that when the package feature is referred to by the statement inside entity
“Multiplier8”, the package name must be placed in front of the package feature in order
to establish “visibility” between those referred items and the entity. For example, the
procedure “Obtain_Product” used in the entity “"MULTIPLERS” must have the package
name “Multiplication” in front of it. If the clause .all is added at the end of the use
statement, 1.e., use WORK.Multiplication.all, then all the declarative items as well as any
of its subprogram bodies contained in Multiplication package are “visible” within the
entity MULTIPLERS. In this way, there is no need to repeat the package name in front
of the referred package items.

Packages are very useful language features. Design groups can use group
standard packages that contain the type declarations ana subprograms relatea to their
projects. As it will be seen in modeling the EPLD, a group standard package EPROM
will be built and extensively used in the program.

The VHDL language defines a package STANDARD that can be used by all
entities. This package contains the definitions for types BIT, BIT_VECTOR,
BOOLEAXN, INTEGER, REAL, CHARACTER, STRING, TIME, as well as subtype
POSITIVE and NATURAL.

7. OPERATORS AND CONTROL STATEMENTS

The operators and control statements of VHDL are similar to those of the other

high level languages, especially Ada. A complete set of operators are shown in

Table 2.

Table 2. VHDL OPERATORS

Class Class Members
Logical not | and | or | nand | nor { xor
Relational =|[/=]<|<=|>]>=
Adding +1-1&
Signing + |-
Multiplving | / | mode | rem
Miscellaneous * | abs

Table 3. VHDL CONTROL STATEMENTS

IF LOOFP RETURN
CASE NEXT WAIT
EXIT

-

The control statements of VHDL are shown in Table 3. Note that most of the
statements are \'ér}‘ general, and only reserved word wait need a further discussion. The
walt statement causes the suspension of a process or a procedure. In the real physical
svstem, 2 process will frequently pause in its execution while waiting for a event to occur
or a time period to elapse. Once the awaited event has occurred or the time period has
elapsed. execution of the process resumes.

In VHDL the wait syntax is shown as follows:
wait on sensitivity_list until condition for time_out

The statement suspends the process until a signal in the “sensitivity_ list” changes, at
which time the “condition” clause is evaluated. The "condition” clause 1s an expression
of tvpe BOOLEAN. Ifitis TRUL. the process resumes. The "ume_out” clause sets the

maximum wait time alter which the process will resume. As an example:

wait on x, y until (2=0) for 100 ns;

This statement will suspend a process until either "Xx” or “v” changes, then the expression
“z=0" is evaluated, and if the value is TRUE, the process will resume. The process will
resume after 100 ns, even if the signals do not change or the condition is FALSE.

Two major applications of the wait construct in modeling are the modeling of
component interaction and oscillator behavior [Ref. 3: pp. 55]. The wait statement gives

the designer additional freedom in writing high-level behavioral models.

B. VHDL SUPPORTING ENVIRONMENT

The purpose of having a VIIDL supporting environment is to assist hardware de-
signers in making efficient use of the capabilities of the VHDL language. A tvpical
VHDL supporting environment includes the design library, the Analyzer, and the Sim-
ulator [Refl. 1]. Currently, there is onlv one VHDL supporting environment (Intermet-
rics Standard 1EEE 1076 VHDL Supporting Environment) installed at the Naval
Postgraduate School. The following discussion will be based on this VIIDL supporting
environment.

The Intermetrics Standard IEEE 1076 VIIDL Supporting Environment consists of
a Design Database and four software components as shown in Figure 15. A general de-

scriptions of this VHDL supporting environment are listed as follows:

1. Design Database. The Design Database is the central part of the system. The da-
tabase of the hardware descriptions and related information are all stored in here.

2. Analyzer. The Analvzer checks the hardware descriptions for syntactic and static
semantic correctness. It also translates VHDL text to the Intermediate VHDL
Attributed Notation (IVAN) form, and installs the translation into the Design
Database.

3. Simudator. The Simulator computes the behavior of a hardware model described
in VHDL and thus provides a mean of checking dynamic semantic correctness.
The Simulator constructs simulatable modules from IVAN data, executes these
modules and generates reports on the runs. The Simulator consists of Iive sub-
components {Ref. 5], four of them are related to user and will be discussed as fol-
lows:

woddns sbenfuej 9201 N4 -
JBUBISMIY JasN -

sases|oy spesbdn -

voddns suoyd Bupsauwbugz -

1$3PNIOUI JUBWILONAUT 1A Souldualul 8y L

Advdal Advuen
NOILVINWIS N9IS3g

w
[] HIOVNVIN . 391003
S14Od3Y HOLVINWIS Agvyan e HIZAIVNY [1aHA
. NOLLYINWIS «— NOIS3Q
JALLOVEI LN .w/
//

¥ N .

” X

COIUNLEVD

$1001 ol)

N3O STA v OIVESIDS

\ \

INIFWNOUIANT LHOddNS S0+ TdHA GUHVINYLS SCikilzlkuzlil

(courtesy of Intermetrics Inc.)

VHDL support environment:

Figure I5.

o~

a. Model Generator (MG). The Model Generator translates IVAN data into C
source code, and compiles it to the simulation module.

b. Build. Build links separatelv model-generated units and makes an executable
Kernel in the Design Database.

c. Sim. Sim invokes the Kernel and passes user-defined runtime parameters to the
model. Execution of the simulation model will typically result in the production
of a file containing signal history.

d. Report Generator (RG). The Report Generator produces human readable re-
ports from the file of signal histories. The selection of signals and the format
of the report are determined by report control language file supplied by the user.

e. VHDL Library System (VLS). VLS provides the commands necessary for the
Design Database.

f. Design Library Manager. The Design Library Manager is the database man-
agement svstem used by the Analyzer, Simulator, and VLS to access data in the
Design Database. .

1. SIMULATION PROCEDURE
After a VHDL model has been created, the model needs to be simulated. The
simulation procedure is shown in Figure 16. The first step, as shown in Figure 16, is
to invoke the Analvzer by typing the kev word VHDL followed by the program file name
as shown in the file Batch -~ Appendix D. If the model has no error, an IVAN form

data will be created. Two rules govern how VHDL design units are analyzed:
1. A body cannot be analyzed before its interface.

2. A unit that references a package cannot be analvzed before that package.

After the VHDL program has been translated to the IVAN form, it ‘then can
be sent to the Model Generator by tvping MG preceding the design VHDL unit name.
i.e., the name of the cntitv or the package just been analvzed. If the VHHDL unit is a
package body, the qualifier "'body” must follow the MG key word.

Each model when simulated needs to have a rop entity. This top entity may be
thought of as a unit that contains a model under test. The top entity itself cannot have
any ports, but, it can have generics {or passing paramecters from external entity or

VHDL supporting environment. An example is shown in the TEST_BLENCI of Ap-

VHDL fite-name

A4
MG [/body] [/top] design_unit_name

A

BUILD [/replace] [/ker=kernel_name] top_entity-name

A

SIM [/param] [/interactive] {[/trace=select_file] {/map] kernei_name

A

RG [/map) kernel_name report_control_file

Figure 16. Simulation procedure

pendix B. In the structure of the top entity. the user must provide a test vector mech-
anism in order to conduct the necessary testing. When generating this top entitv, a
qualifier ” top” must follow the key word MG.

After all the object modules have been “Model Generated”, thev can be “linked”
by tvping BUILD. This will produce an executable Kernel in the work librarv. The user
can assign a kernel name by using the qualifier “'ker= name” following the keyv word

BUILD.

The SIM kev word will execute the Kernel and generate a Run in the working
library. The SIM can be followed by a qualifier “/trace = select”, where “select” may be
any file name which contains the pathnames of the selected signals. Consequently, the
Simulator will record the histories of these selected signals. In this way, the user can
discard those irrelevant internal signals, and use the limited memory to keep the wanted
signal information. If no trace qualifier is specified, which is the default, then the his-
tories of all the signals will be kept.

As mentioned above, the top entity can only have the generic declaration, which
can receive the values provided by the SIM qualifier “'param=". With this feature, the
user can control the simulation time or even change the operation of the model.

Besides the non-interrupting simulation mode, the VHDL supporting environ-
ment also provides an interactive simulation mode as shown in Figure 13. In this mode,
the user can set the breakpoint, see the signal transitions, and change the status of the
signals. The interactive simulation mode is a very useful tool in debugging.

2. REPORT GENERATOR

The Report Generator will produce a readable report file from recorded infor-

mation. Its output signal and format are controlled by the report control file. An ex-

ample file is shown in Appendix B. The command to generate the report is as follows:
RG control_file report_output_file

Note that only those signals with histories preserved in the simulation can be generate
in the report.

The qualifier “/map” can be used with key word SIM and RG, this qualifier can
produce a signal map, which contains all the signals used in the model. With this signal
map, the user can easily find out the wanted signal pathnames. An signal map example

1s shown in Appendix C.

3. VHDL LIBRARY SYSTEM (VLS)
The VLS allows user to interact with the VHDL Design Database. The user can
create his own library. A library is either a primary library or a secondary library. A

primary library may contains the following kinds of data:

e VHDL units, i.e., entity declarations, architecture bodies, package declarations,
package bodies, configurations.

¢ Simulation Kernel.
¢ Simulation runs.

¢ Other libraries.

The secondary library may contain only package bodies, architecture bodies,
and other secondary libraries. The purpose of secondary librarv is to allow users to
experiment with their designs by using alternative package bodies or architecture bodies.

The VHDL Library System is entered by typing the VLS kev word. After en-
tering the VLS, the user can make his own librarv by tvping the kev word MAKELIB

followed by a physical library name, an example is shown below:
MAKELIB <<user_account. EPROM>>

Note that the symbol "< < > >" means that the name inside is the phvsical name of
the created librarv. The user_account is the user login name. In VLS| this name is
trcated as a rootf library name. Every user must have a root library. In the example
above, a library called EPROM was created under the root library.

There are two predefined libraries: STD and WORK. STD is the logical name
of the standard library. WORK is the logical name of the current user working library.

The logical name can be declared as follows,
DEFINE EPROM <<user_account. EPROM>>

All the created VIIDL units will be stored in the current working library whose

default 1s the root library. If the user wants to change the current working librarv, he

or she has to tvpe the key word SETLIB followed by the physical or logical library name

in the VLS environment. For example,
SETLIB EPROM

will change the working library to < <user_account. EPROM> >

The design group members mayv share each others libraries. For example, as-
sume that there are two users, “phred” and “janus”. If “janus” creates a entity that uses
the package EP310_PACK in the library EPROM, and the EPROM belongs to “phred”,

she may declare

library EPROYN;

use EPROM.EP310_PACK. all;

P T e e e T I I

B L e R

With the shared lhibraries, the user can avoid the redundant components and standardize

the design.

IIl. MODELING THE EP310

A. INTRODUCTION OF THE EP310

The EP310 is an Erasable Programmable Logic Device (EPLD) manufactured by the
Altera corporation. A user can use the CAE design tools, as shown in Figure 17, to
configure the connections in the programmable AND logical array and the flexible
output feedback section of an EP310. As shown in Figure 17, the user can do his design
via schematic capture entry, state machine entry, netlist entry, or boolean equation
entrv. Once the design was finished, it can be processed, and a JEDEC file is produced.
The JEDEC file is a file with the standard data transfer format from the design si’stem
to the hardware programmer unit. An EPLD can be physically configured by a “hard-
ware programer” with the JEDEC file as input.

Externally, the EP310 provides 10 dedicated inputs. One of which may be used as
a svnchronous clock input. Eight I O pins, shown in Figure 18, may be configured for
input, output or bi-directional operation.

Figure 18 shows the complete EP310 block diagram, and Figure 19 shows the basic
EP310 macrocell. The internal architecture of a microcell is organized in a sum of pro-
ducts (AND-OR) structure. Inputs to the programmable AND arrayv, shown running

vertically in Figure 19, come from two sources:
1. The true and complement of the 10 dedicated input pins.

2. The true and complement of § feedback signals, cach one originating froma [O
Architecture Control Block.

The 36 input AND array, as shown running horizontally in Figure 1Y, 1s called the
product term. There arc 8 identical macrocells in an EP310. Each macrocell has 9

product terms. Therefore, the total number of product term s 72,

SCHEMATIC

FUNCTIONAL

SIMULATION

/

» JEDEC

CAPTURE ENTRY >| PROCESSOR
METLIST ENTRY » PROCESSOR
D?;;ll_JE/fT{l‘ON ey [| PTCCESSOR
S-r',;\}-:lc;ur.le ENTRY F| FROCESSOR

4

D

FILE

PROGRAMER

EPROM

AN

Figure 17. BLOCK diagram of EPLD design emironment

3o

CLOCX
’ : LA B R AL R L I L I B 1 .y
SN wl @ e 1] Rl 2o} 2l < 2] Y[] ¢
PRESE! +— —{ O
o371]
. o
E LOGIC ARRAY MACROCELL l— ArCHiTECTURE
= CONTAROL
1
131 1
I FEEDBACK

;'_LT"
PRESET CLEAA CLOCK

PRESEY CLEAR CLLIX

151

PRESET CLEAR CLOCK |

-

s
TLILEY r?ff e % ITLY % Ll

PRESEY CLEAR CLOZK

:

=

ML

AESFT CLEAR CLOCK

e

-3 d

q
i

PRESEY CLEAR CLNCK

|
!
T
1
1
L 2]
}..4.—
¥
I8
I

PRESET CLEAR CLOCK

[

; LI HIL B LT

ASYYS
CLEAR

bt

23—

Figure 18. EP310 block diagram: {From Ref. 6]

{2
<2

L

cLocx
w0l 3l ul wf ol ¥ ¥ 5' ! p

AT

i NImiN|N JHE ST o= quiry

Ligum m mims "“‘D’ PRESED 1
g - L‘WL“ T = __—L,jj___, 1HT [1:1:1 ’12 Ao
=,. _ L— - RN cx O
gf‘ﬁ N . - . = A I - __D~ Crian

Mote: n 170 Pin in which Logic Array input is from leedback path

1 ? 3 4 s [

S FLLDRACK
" "0 "w 1 I 1%

3

This diagram shows one of tha eight Macrocells within the EP310.

Figure 19. EP310 macrocell [From Ref. 6]

At cach point of intersection in the product term, as shown in [igure 19, there exist
an EPROM type programmable conncction. [nitially, all connections are made. This
means that both the truc and complement of the inputs are connected to each product
term. Connections are opened, according to JEDEC file during the hardware program-
ming process. Therefore, any product term can be connected to the true or complement
input signals. When both the true and the complement connections of any input are left
intact, a logical false results on the output of the product term. If both the true and
complement connections of any input are programmed open, then a logical "don’t care”
results for that input. If all inputs of a product term are programmed open, then a
logical true results at the output of the product term.

As shown in Figure 19, the outputs of 8 product terms are ORed together, and the

output of the OR gate is fed as an input to the I'O Architecture Control Block. [n the

I.O Architecture Control Block the signal from the OR gate is configured for register
or combinatorial operation via Output Selection Switches. Both types of operations can
produce inverted output. The feedback mode of the I:O Architecture Control Block can
be programmed as combinatorial feedback, registered feedback, 1,0 (i.e, directly from
the pin), or none, via the feedback selection switches.

Besides the normal macrocell product terms, there are additional Synchronous Pre-
set and Asynchronous Clear product terms. These product terms are connected to all
D-type flip-flops. When the Synchronous Preset product term is asserted HIGH, the
output of the register will be loaded with a HIGH on the next LOW to HIGH clock
transition. When the Asvnchronous Clear product term is asserted HIGH, the o'utput
of the register will immediately be loaded with a LOW independent of the clock. An

asynchronous clear assertion overrides a synchronous preset asseration.

B. DEFINE THE PROBLEM

Since an EPLD device is programmable, its configured structure varies with different
implementations. It is desirable to model an EPLD device in VIIDL so that it is inde-
pendent to the desién environment, i.e, does not depend on the design tools. The model
can read in a user created JEDEC file, and configure its internal connection to perform
the user specified function. -

Besides the correct functional simulation, a model must also provide the correct
timing simulation. When the timing of the model is violated due to register timing re-
quirement, or bus collision, the simulator should be able to warn the user and report

where the error occurred.

C. DECOMPOSITION OF THE EP310
In this research, a hierarchical structure approach was used to model the EP310.
The top of the hierarchy is the LP310 itself. Based on Figure 18, thc components in the

next level down in the hicrarchy are the Logic Arrav Macrocell, I O Architecture Con-

trol Block, and the tri-state buffer. Below the Logic Arrav Macrocell is the Product
Term. Except for the tri-state buffer, all the other next level elements are declared as
components in the EP310’s architectures as shown in Appendix A. The Logic Array
Macrocell can be decomposed into 8 Product Term components. The ;0 Architecture
Control Block can be decomposed into the D-type flip-flop, the Output Select Unit, and
the Feedback Select Unit as shown in Figure 19. Here, only a D flip-flop is constructed
as a component below the I;O Architecture Control Block. The Feedback Select Unit
and the Output Select Unit are implemented directly inside the IO Architecture Control
Block.

Besides these 4 components, the EP310 model also need a place to keep the timing
parameters and a function "READ_310" to read in the JEDEC file. All these EP310
dependent functions and parameters were put into a package called EP310_ PACK as
shown in Figure 20.

Functions to convert the types are needed whenever different type signals are passed
between different entities. A resolution function to resolve the multiple-source signal is
also required. Because of the general usability of these functions for all parts of the
EPLD,. these functions are put into a package called EPLD_PACK, which is visible to

all the necessary components as shown in Figure 20.

D. ESTABLISH DATA FLOW

After the hierarchy of an EP310 was established, it is necessary to reveal the signal
flows between different components at different hierarchical levels. Externally, the
EP310 chip can only see 18 data pins. Ten of them are input pins and the others are
input output pins. These 18 data pins are the data path between the outside circuit and
the EP310 internal components. Beside these signals, an EP310 model must also receive
a JEDLC file from the outside to simulate the designed behavior. This is done by

passing JEDEC file data through a generic port to the sumulated entity.

40

As discussed previously in this chapter, the Logic Arrav Macrocell has 36 signal
lines which are derived from 18 data pins. In the VHDL model, instead of using 36
signal lines, only 18 data lines were fed into the Logic Arrav Macrocell. These 18 data
lines corresponding to the 18 data pins on the EP310. Doing it this way helps to reduce
the excessive internal signals in the VHDL. The EP310 depending on the 1O architec-
ture configuration can output signals through the input’output pins.

The Logic Array Macrocell accepts 18 input signals and produce two internal
signals. One is the tri-state bufler output enable, and the other is the ORed signal fed
into the I'O Architecture Control Block. The Logic Array Macrocell must also receive
the corresponding JEDEC file information, i.e., 8 product term for each row of JEDEC
file data.

There are three input signals to the 1. O Architecture Control Block, one from the
Logic Array Macrocell, one from the dedicated input pin (serve as svnchronous clock),
and the last one from the 1 O pin. The I O Architecture Control Block outputs two
signals, one is the feedback signal, and the other is fed into the tri-state buffer. The l O
Architecture Control Block must also receive the corresponding JEDEC file information
that used in configuring the switches in the two select units.

For a D flip-flop there are four input signals. One is the clock which is from the
dedicated synchronous clock input pin. The second one is the synchronous preset which
is from the synchronous preset product term. The last one is the asvnchronous clear
which is from the asynchronous clear product term. Although, there are no program-
mable connections in the D flip-flop, the JEDLEC file informations is still needed to dis-
able the assertion mechanics inside the D flip-flop, which will be discussed in the
REGISTER TIMING section.

The Product Term was used inside the Logic Array Macrocell and the EI’310. The

Product Term has 1S inputs signals passed from the next higher hierarchy level and

41

EP310 package EPLD ,«rxage
Timing parameter Type declaration
Function: Function:

Read_JEDEC Type_converter

Check_pterm

(Visible to all EP310 components)

EP310

N

I/O Architecturc
Macrocell Contro! Block

(1O_control)

Product term D type Flip-fiop
(P_term) (D_register)

Figure 20. Decomposed EP310 hierarchical block diagram

produce one output signal. The Product Term must also receive the JEDEC file infor-
mation from the next higher level entity in order to perform the user specified functions.

Figure 20 shows the decomposed hierarchical block diagram. As discussed above,
the EP310 consists of 4 components, Logic Array Macrocell abbreviated as Macrocell,
I O Control Architecture Control Block abbreviated as 10_control, Product Term ab-
breviated as P_term, and D flip-flop abbreviated as D_register.

The binding of component to entities is performed by configuration specifications.
The configuration performs a component selection kind of function. With this feature,
interchange of components from different technologies are possible. As discussed in
Chapter 11, VHDL configuration specifications appear in the declarative part of the
block where the corresponding component are called. In certain cases, however, it may
be more suitable to leave the configuration unspecified and defer such decision until the

Kernel is built [Ref. 4: pp.1-9].

E. SIGNAL ASSIGNMENT

There are two ways to assign signals. One is to gather signals with common prop-
erties in an array. The other is to treat the signals separately. The benefit of using a
signal array 1s its simplicity. But, there 1s a drawback. That is, each time when one of
the elements in the array is activated. the whole array is activated. The processes asso-
ciated with the elements of the array will be activated too often in a complex design.
This costs a lot of simulation time. On the contrary, the single signal assighment may
be more efficient in reducing the simulation time. But, it will make the model complex
and hard to comprehend. In this study, the EP310 data pin signals are defined sepa-
rately in order to reflect the real chip pinout; the rest of the signals arc implemented by

using the signal arrav.

43

F. JEDEC FILE INFORMATION TRANSFER
As mentioned before, the EPLD model needs to read in the JEDEC file information
in order to perform the designed function. There are three methods to transfer the

JEDEC file information from outside to an entity model:
1. Assign information via generic.
2. Passing information via port.

3. Passing information by predefining it as a constant in the package, and make it
visible to the entities.

Since the JEDEC file depends on the user’s implementation, it can vary. It is not
a good approach to declare the JEDEC file data as constants inside the package. If
signals were used to transmit the JEDEC file data, the total number of signals including
the implicit signals will be too large. This will affect the total simulation time, since ev-
erv signal driver of this large set has to be checked at each delta cvcle.

Due to the reasons discussed above and the nature of the JEDEC file, passing in-
formation via the generic is preferred. In this research, using generic to transfer JEDEC
file information were adopted. The JEDEC file name is fed in via the EP310 generic at
one level higher than the EP310 entity. In the EP310 declaration part a function called
READ_JEDEC is used to read in the necessarv JEDLEC information. An example of
using generics to pass the JEDEC file data to EP310 entity is illustrated on the next

page.

-- inside package EP310_PACK declaration.
- function READ_JEDE(file_name: in string)

return jedec_file_datas;

-- inside the TEST_BENCH body.
architecture demo of test_bench is
component EP310 generic(JEDEC_file_name);
port(pinout_specification);

-=- other statement.

begin
EP310 generic map(user_defined_JEDEC_file)
port map(pinout_specification);

-- other statement.

end

-- inside the EP310 entity body
architecture STRUCTURAL of EP310 is
constant BIT_MAP : jedec_file_data

:= READ_JEDEC("JEDEC_file_name");

The constant "BIT_MAP” is declared to have a "jedec_file_data” type, and its value is

assigned by the returned valuc from the function READ _JEDEC. After the BIT_MAP

is 1nitialized, its subcomponents are passed via generics to the corresponding compo-
nents below the EP310. Note that the “jedec_file_data” type is not defined here. Refer

to Appendix A for the actual declaration and the exact program.

G. MULTIPLE LEVEL LOGIC
Because not all pins on the chip will be used, it is necessary to introduce a signal
with three-level logic to represent the unconnected situation. The EP310 model uses a

new type TRI, which as shown below has a three level logic: ‘0’, 1" and "U".
type TRI is ('U','0',"1");

The 'U’, depending on the location of the signal, means unconnect or uﬁdeﬁned.

Since the VHDL is a strongly typed language, when constructing a multiple state
design, it 1s necessary to include a type conversion function to pass different type signals
between different processes. The following is a conversion function example used in the

EP310 model.

function tri_to_bit(inbit: tri) return bit is
begin
if inbit='1l" then
return '1';
else
return '0’';
end if

end bit_to_tri;

Note that, the conversion function will return a value ‘0’, if the input is "U".

46

II. BUSSED SIGNAL
Shown in Figure 21 1s an example where the signal “local” is driven by two sources.
The sources of the signal “local” can come from the output of the tri-state bufler or from

the “io_pin”. Below is the statement that can model this connection. .

local<= output after tod when enable='1l' else

io_pin after tiottin; --tiottin is input delay

OE (output enable)

enable

oulput | (\\ \ Iio__gin I

signal from
output select unit /O pin

local

"local” input
to feedback select unit

Figure 21. 1/O primitive signal flow diagram

Note that the statement above has implied that the “output” signal has higher pri-
oritv then the "to_pin” signal. This is reasonable, since the “output” signal drives not
only the “local” signal but also the "io_pin” signal. Only when the tri-state bufler is

dicabled, will the "1o_pin” signal value be assigned to the signal "local”.

As mentioned before, the “1o_pin” is a bi-directional pin driven by two sources, one
is the tri-state buffer output, and the other is an external user input. It is driven in a
time multiplexing sense. In order to model this circuit, it 1s necessary to declare the
“lo_pin” signal as a resolved signal. A resolved signal is a signal that has an associated
resolution function. Resolution function is a user defined function that computes the
value of a resolved signal form its multiple sources.

There are two wayvs to declare a resolved signal. One is by adding a resolution

function to the front of the type, such as:

signal io_pin: inout RESOLVER tri;

The other way is to declare the signal with a resolved subtype, such as:

subtype tri_state is RESOLVER tri;

signal io_pin: tri_state;

The resolution function used here is called the RESOLVER. Basically, the RE-
SOLVER will gather all the sources of the declared signal, compute it according to user

defined rules, then return the resolved value. Below is the implementation of the func-

tion RESOLVER.

function RESOLVER(signal inputs: tri_vector)
return tri_state is
variable resolved_value: tri_state:='U';

variable flag: integer:='0';

43

begin
for i in inputs'range loop
if inputs(i)/='U' then
flag:= flag + 1;
resolved_value:= inputs(i);
end if;
end loop;
assert flag <=1
report "io_pin bus collision."”
severity FAILURE;
return resolved_value;

end RESOLVER;
In the signal assignment statement the io_pin is assigned as:

io_pin <= output after tod when oe = '1' else
'U' after tod when oe= '0' else

"',

Note that if the corresponding tri-state buffer is enabled, i.e., oe="1" anc'i: in the mean-
time, the user gives io_pin another assignment from the top entity, then the signal will
have two active sources. It means that the source values are not all ‘'U’. In this case,
the resolution function shown above will assert the data collision message. On the other
hand. if only one source is active, the resolution function will output the active source

value and assign it to the io_pin without the violation message.

I. PRODUCT TERM INTERNAL CONNECTION
As mentioned previously the EPLD logic arrav has programmable internal con-

nections. The connections were made according to the corresponding JEDEC file spec-

49

ification. In this research a function, called check_Pterm, is used to generate the correct

functional output. The check_Pterm function has two type of inputs:
1. Eighteen signals from the feedback lines shown in Figure 19.

2. Thirty-six internal connection specification defined as P_string from the JEDEC
file.

The check_Pterm function generates the correct value according to the specification and
the conventional logic array rules discussed in the previous section. The main mech-
anism of this function is to decide whether the input signal should be included by ex-
amining the true and complement connections of the signal in the JEDEC file. Shown
below is a portion of the decision statements used in the check_Pterm. The statemens
are written in VHDL alike pseudo code. Refer to the package EPLD_PACK of Ap-

pendix A for the full exact detail:

-- begining of the decision statement.
output:='1";
i:=1;
while i<=P_string'length loop
if(P_string(2*%i~1)='0" and P_string(2*i)='1') and

(input_signal(i)='U"' or input_signal(i)='1") then

output:='0Q"

exit;

end if

-- other decision statements.
end loop;

return output;

The "P_string” in the above example is an arrav which contains the programmable

AND array internal connection data. The statement "P_string (2%1-1)="0" and

50

P_string(2*1)="1" “ will check the connections to see whether only the complemented
connecting point shown as P_string(2*i-1) exists. If the complemented connecting point
exists and if the corresponding “input_signal(i)” is '1" or ‘U’ (unconnected), the output
will be ‘0’. With statements similar to the above example, the other three situations are
checked to produce the correct output. These three situations are: a) both the true and
the complement connecting points exists, b) both points do not exists, or c) only the true

connecting point exists. See the function check_Pterm of Appendix A for the details.

J. EPLD TIMING SIMULATION

As discussed in a "EPLD timing simulation” paper [Ref. 7], the timing diagram of a
general EP310 is shown in Figure 22. The delay time through logic .array (tlad) \;'as
modecled as a constant. The rest of the timing parameters were like those found in the
conventional logic circuit. Below are the description of the timing parameters shown in
Figure 22.

I. tin- input pad and buffer delay.

tJ

tio- I O input pad delay. This delay need to bz added to tin when an I O pin is used
as input.

tod- output buffer and pad delay.

oW

txz- time to tri-state output delay.

n

tzx- tri-state to active output delay.
tlad- logic arrav delav.
tlade- enhanced logic arrav delayv.

tsu- register sctup time.

o ® o

th- register hold time.

10. telr- asvnchronous register clear time.

11. telre- enhanced asvnchronous register clear time.
12. tics- svstem clock delay.

3. tic- clock delav.

I14. tice- enhanced clock delayv.

13. tfd- feedbuck delav.

51

o DELAY [CLOCK DELAY by OUTPUT
t . tic tice 1 ty, anrt.) Eg‘z’ —
R J W tase|] tx
»{ LOGIC ARNAY DELAY J
- tan tuace
{\/xgur FEEDBACK
EOR i DELAY
o - 4
tm

Figure 22, EPLD timing block diagram [From Ref. 7]

16. tch- minimum clock duration, when clock is high.

17. tel- minimum clock duration, when clock is low.

Since a EP310 is decomposed into four components shown in Figure 20, it is nec-
cssary to assign cach component with its associated timing parameter. [Figure 23-shows
the decomposed components with their timing paramecters. All the timing parameters
uscd in this research can be found in [Refl 7]

I. REGISTER TIMING

The most important timng problem related to a register is its setup time, hold
time, and minimum pulse width. For cxample, consider the clocked register in
[Figure 24. It is a common requirement that the data input be stablc for a duration of
time prior to the clock transition that strobes the data into the register. This require-

ment is known as the sctup time of the data refative to the clock., A similar requirement

w
(2]

EP310

tin, tio, tics, tod

8 components 8 components

VO (I1O_CONTROL)
MACROCELL CONTROL ARCHITECTURE
2 components:
1 clear p_term
tzx, txz 1 preset p_term tfd

2 components:
8 general p_term

1 tri_state output

one component
per I/O control
architecture

1 enable_pterm v
PRCDUCT TERM D TYPE FLIP-FLOP
(P_term) (D_register)

no timin arameter
9P th, tsu, tch, tc!

Figure 23. EP310 hierarchical block diagram with timme parameter

states that the data should remain stable a minimum amount of time after the clock
transition which is known as the hold time requirement.

Figure 24 shows the input specifications for the register in a tvpical EPLD. The
specification savs that (1) DATA should be stable for tsu nanoseconds before CLOCK

rises, {2) DATA should be stable for th nanoseconds after CLOCK rises, and (3)

‘N
L)

(synchronous)
PRESET

from ORed
P_term D Qj——

to output

. select unit
from dedicated

input pin (pin 1) ———DCLOCK Qp———
CLEAR

(asynchronous)

SYNCHRONOQUS CLOCK MODE

>~ ‘.rl«— lc:|—>| —»] t ‘4~ oL -»l
CLK
o - Sy Y1 |et——
INFUT OR 1/O MAY CHANGE >/\mlif)“ A \ INPUT OR /O MAY CHANGE
i+ 1CO1 9
T Eals e | —>'/ VALID OUTPUT
s) \

——-—>l {eET l>4——

/ SYNCHRONOUSLY
\ PRESET OUTPUT

Figure 24. D register timing diagram

tn
1.

CLOCK should have a minimum duration at the high level of at least tch nanoseconds.
The following assertion statement in VHDL checks the setup time specification of the

D register of the EP310:

assert not(not clk'stable and clk='1l' and (not d'stable(tsu)) and
clear='0"' and (03='0' or 04="'0' or F2='0"))

report "Setup Time Failure";

Using the DeMorgan’s theorem, one could convert the assertion statement to a simpler

form

assert ck'stable or ck='0' or d'stable(tsu) or clear='1l' or

(03="1" and 04="1' and F2='1')

In the above example the attribute D’'STABLE(tsu) will be TRUE if and only
if signal D has been stable for tsu time units already. Since this D register has an
asynchronous clear, it is necessary to include “clear="0"" in the assertion statement.
Otherwise, when the “clear” is set to one, the D register will resume the synchronous
clock cycle and produce the errorous result. The reason for checking the switches O3,
O4, and F2 in Figure 19 is to see if the register is selected to operate. 1fth.c macrocell

1s dedicated to perform combinational logic, then the assertion will be disabled.

(not clk'delay(th)'stable) end clk'delay(th)="0’

(not clk'stable) and clk="0"

-y
’1/
CLK /
tsu th
— |- ™
D velid input J><
D'stabie(th)

Figure 25, lold time timing diagram

The hiold time can be checked by using the following VIIDL statement:

assert ck'delayed(th)'stable or ck'delayed(th)='0" or d'stable(th) or
clear="1" or (03="1"' and 04="1" and F2='1")

report "Hold Time Failure"

The statement will check the stability of data "d” after the necessary hold time (th). The
hold time start {rom the rising edge of the clock and end at the falling of the clock as
shown in Figure 28, If the evaluation of the statement are false then the error will be

reperted, whicho means the (hip-flop hold time is not satisficd.

S6

Simularly, the minimum pulse-width can be checked by using the following

statement:

assert ck'stable or ck='1"' or ck'delayed'stable(tch) or (03='1' and 04='1"
and F2="1")

report "Minimum pulse width failure",

K. COUNTER

An EP310 was configured to implement a 7-bit counter. The JEDEC file was gen-
erated by using the Altera logic design tool. The model was tested as a 7-bit counter.
The simulation starts from a top entity called the “TEST_BENCI”. The code of the
“TEST_BENCH" and its architecture body are shown in Appendix B. The simulation
result are also shown in Appendix B. Basically, the “TEST_BENCH" calls the EP310
entity, provides the signals to the EP310’s input pins, and the the external JEDEC file
name to the EP310°s generic. The user can control the simulation time via the generic

of the “TEST_BENCH".

1IV. MODELING THE EP1800

A. INTRODUCTION OF THE EP1800

The EP1800 like the EP310 discussed in Chapter 111 is also an Erasable Program-
mable Logic Device with a larger number of macrocells. In the EP310 there are about
300 gates, but in the EP1800 there are about 2100 gates [Ref. 6: pp. 2-4]. The EP1800
has a classic programmable AND array just like the EP310. But, unlike the EP310
which has only one D-type flip-flop, the register inside the EP1800 can be programmed
into a D-tvpe, T-type, JK type, or RS tvpe flip-flop. Each register can be clocked
asynchronously on an individual basis or synchronously on a banked register basis [Ref.
6: pp. 2-6).

The block diagram of an EP1800 is shown in Figure 26. Externally, the EP1800
provides sixteen dedicated data inputs, four of which may be used as the svstem clock
inputs. There are 48 I, O pins which can be individually configured to be input, output,
or bi-directional pins.

Internally, the EP:is00 contains 48 macrocells. As shown in Figure 27 and
Figure 28, each macrocell contains three basic elements: a logic array, a seI'eciabIe reg-
ister element., and a tri-state I O bufler. All the combinatorial logics are implemented
within the logic array. For register applications each macrocell provides one of four
possible flip-flop operations: D, T, JK, and SR.

The EP1800 is partitioned into four identical quadrants as shown in Figure 26.
Each quadrant contains 12 macrocells. The macrocell input signals come from the
LP1800 internal bus structure. The macrocell output mayv drive the EP1800) cxternal
pins as well as the internal buses. Sixteen of the EP1800's 48 macrocells offer increased

speed performance through the Logic Array. These “Enhanced Macrocell” can be uti-

58

QUADRANT A QUADRANT D
24ry - (E1I 88
"OK‘:{T © CMACROCELLY 77 ¢ fee - | -+ ® MAGROCELL 48 P
G2 {ED
VO S —{ ' ‘¢ MACROCELL2 . -~T H— —— Lo—md .77, MACROCELL 4T -~ g3 1O
4Gy e []
y 5. MACROCELL Y (47 . }e-ed }o—o] — foed -%iT MACROCELL 46 " % e |
S 1142} - < o 07 48
vo w4 MACROCELL4 '~ == = |- v | A MacaoceLL 43
6 (1) < -"- [l
vo o3 — MACROCELL § -l & fo— el &t MACROCELL &4
114 2 Q 1CT o3
3 — MACROCELL § - 32 . 2 MACROCELL €
8 111) 1 3na
MACROCELL 7 | 0 |} —o! & o] MACAOCELL 42
9 1%ty 3 g 182) 4
MACROICELL 8 ame TR nl S TV nans MACAOCELL 41 — 3 vo
10 12y 2 1A% 6
vo K22 MACROCELL 9] 8 b Rens g - MACROCELL 40 o vo
DRLE3) -] A3 &3
1 MACROCELL 10 — -— ~—d -t MACROCELL 39 S5 ve
A LS 1 L4
vo MACAROCELL VY S -—i =i - o—nd $AACROCELL I8 - v
o (ALY &7 .
vo MACHICELL 12 - -— [~ MACROCELL 37 £33 1o
14 1%4) . (B4 28
INryT 53 [T A o, VLY
rut C.‘Sl“) - {AS) -2
NPy] L= NPT
6 (K5} o (B%s ‘4
nNryT - v _ <1 INPUT
RES-H 2 1#5:
NnPuTCLK 3 — > @ Q— - CLXAINPUT
35 1 v 4 9 ATy Gy
INPUTCLKZ g a CUQYINPUT
AL] ' 9 8h <
NryT e 3 —
' FIN{%8) :\ (Al 23
INPU »—1 S '—- INPUT
L ~ 1an c8
NFUT 13 T INPUT
LANIST 1A a7
vO B T3-e MACROCELL 13 9(_—-4» -— - MACROCELL 36
LA I ¥ IIRXY
o B3 MACROCELL 14 - e -~ | MACROCELL 35 1o
T 1 A0 53
vo i MACROCELL 1§ -— -— — MACROCELL 34 o
25 (0 [It 810} 24
0o B3 -4 MACROCELL 16 -1 2 - MACROCELL 33 ®o
L0 < B £
90 T3 MACROCELL 17 el &] — & | MACRCCELL 32
20 (KN < oy el
vo 53— MACHOCELL '8 —l 2 b ——l S e 1ACROCELL 31 5
73440 1 ? Cinar
voES ACROC W ey MACROCELL 20 vo
tﬁw MACROCELL 19 *_. 2 - 1 g Do
[2¢) MACNCCELL 29 I ! O ool MACROCELL 29
Mo,) & - 0 e
vo v macnrocELL ool 8 t-— |—{ & e MACROCELL 28 3™
Aoy > = - - Ell} A
VO E3-—{ * 1 MACRCCELL 2 -~ o . . . MACROCELL 27 *2 £
EREOTT e
1] N1OMACRCCELL?2Y - [~ e | ' MACROCELLZ8 "™ vo
3451 £ 3%
vo ——{ % TMACPICELL24 -— b le—e{ “+¥ MACNOCELL2S ~! vo
QUADRANT B QUADRANT C
L4 (86 82
vee vee
TP (F10) 3§
GNG GND

() - PEATAIN TO 88 PIN FGA PACKAGE

(l GENERAL MACROCELLS
l l GLOBAL MACAROCELLS
] erMANCED MACROCELLS

Figure 26,

i

EP 1800 block diagram [From Ref. 0 |

GLOSAL US —~ee————————— LOCAL B3US

PROCUCT TIRUS
P L e

|

T PN N R A
I

E

oLoeAL OuA DRANT OUADRANT
DEDICATED At CO LOCAL
NPT L CLOBAL FLEDBATX
(% PUTS) REE DU AT (12 MACAOCLLLS)

(16 MASROCTLLS)

Figure 27. Local macrocell: [From Ref 6]

lized in places where combinatorial logic path delay is critical. There are four Enhanced
Macrocells for each EPIS00 quadrant as shown in Figure 26. A detailed delay timing
specification of these Enhanced Macrocells are listed in the file EP1800_PACK in Ap-
pencix A.

There are other sixteen "Global Macrocells” that can provide dual functions. These
Global Macrocells shown in Figure 28 implement buried logic functions, and at the same
uime serve as dedicated input pins. Thus, the EP1800 mayv have an additional 16 input
pins vielding a total of 32 inputs. The Global Macrocells have the same timing charac-
teristics as the General Macrocells [Ref. 6: pp. 2-7].

Each of the EP1S00 internal {lip-flops can be clocked independently or in user-
defined groups. Any input or internal logic function may be used as a clock. These

clock signals are activated by driving the flip-flop clock input with a clock buffer prim-

60

OUA HRANT
FYNIONOUS
ocx
™ ot
——————— GLOBAL U e = LOTAL BUS —— m’;r seLect
Yee oe
OUCK o} J] D-¢ | rg—;l——
_’g |o
@ — D
§ v — D—
E 2 o ‘
[[i RS i S— —-—D— vo Vo
E o — {D—{ ancrwrscrune B
]
E 1 —_— D COMIROL
" — O
! O
cuar - O
N oo O I 2 P\....;:\L oL BUS
T 1
D m GLOBAL BUS
2.0 p
¢ VAL QI ADRANT QUADRANT
OF.D. CATED ANCDO LNCAL
naTy QLOIAL FTLOAACK
(e INTUTS) FrYDRACY, (12 KA. NOCELLS)
{1 MACHOZELLR}
B ——

Figure 28. Global macrocell: [['rom Ref. 0]

tive (CLKB). In this way, the {lip-flop can be configured for either positive or negative
edge triggered operations.

Four dedicated system clocks, CLK1 through CLK4, provide clock signals to all the
flip-flops. Systemn clocks are [ed directly from the LP 1800 external pins. With this direct
connection, a system clock imposes the shortest delay than internally gencrated clock
signals. There 1s one system clock per EP1800 quadrant. When using svstem clocks. the
flip-flops are positive edge triggered, i.c., data transitions occur on the rising edge of the

clock.

B. DECONMPOSITION OF THE EP18)0
Just like the EP310, the hierarchical structure approach is used to decompose the
EP1800. The top level is the EP1800 itself. Based on Figure 26 the next level down in

the hierarchy are the Quadrants. Below this level is the Global Macrocell and the Loca]

61

Macrocell. The hierarchical levels lower than macrocells are similar to those structures
in the EP310.

The EP1800 model also needs a function READ_JEDEC to accept the JEDEC file
and a few other necessary functions to implement the real physical device. All these
functions together with the timing parameters and the defined types are stored in a
package called EP1800_PACK as shown in Figure 29.

The EP1800_PACK and the EPLD packages discussed in Chapter 111 are visible to
all the necessary components. The total EP1800 hierarchical structure is illustrated in

Figure 29.

C. ESTABLISH DATA FLOW OF THE MODEL

After the hierarchy of the EP1800 is established, it is necessary to identify the signal
flows between different components.

Looking at an EP1800 chip from outside, only 60 data pins and 4 dedicated system
clock pins are visible as shown in Figure 30. Therefore, at the top level of the entity
EP1800, there are 64 signals in its port declaration. These 64 signals serve as the signal
paths between outside circuit and the EP1800 internal components. Besides these
signals, an EP1800 model must also receive a JEDEC file from the outside to simulate
the user-designed behavior. This is done by passing the JEDEC filc name through a
generic port to the simulated entity just like the mcthod used for EP310.

Inside the EP1800 entity, there are 4 quadrants. These 4 quadrants are svmmetric
in some sense, i.e., two of them are upside down. Therefore, there is onlv need to build
one quadrant model. The remaining quadrants can be implemented by using the model
directly or modifving the generic with the reverse function. The details are described in

the EPI800 architecture body of Appendix A.

EP1800 package EPLD package

Timing parameter Type declaration

Function: Function:
Read_JEDEC Type_converter
Inverter Check_pterm
Find

(Visible to all EP1800 components)

\V/
Com)
!

~
Quadrant
J>
E_ocal__macrocell Global__macrocell]

_
Y AT -
[>_term (I0_control (components below
-) the Global_macrocell
; are the same as
™ the components
D _register below the
J Local macrocell
on the left)

Figure 29. EPI1800 hierarchical model diagram

63

wiryt G
weyr 0y
wiryt 9!6

Cux1r

mtﬁm

anale
N’Ula

Figure 30. EPISO00 chip overview: [From Ref. 6]

The signals going into each Quadrant include the global bus inputs and a svstem
clock input. Four of the Quadrant output signals are from the Global Macrocell tri-
state buffer outputs. The rest of the 8 signals are bi-directional General Macrocell 1O
pins.

There are 12 macrocells inside each Quadrant. These macrocells are glaésiﬁed as
Global Macrocell, General Macrocell, and Enhanced Macrocell. The structure of the
General Macrocell is the same as the Enhanced Macrocell. The only difference between
these two macrocells is that the Enhanced Macrocell has a shorter time delay. There-
fore, when modeling the EP1800, it is only necessary to build the General Macrocell
modules and the Global Macrocell module. The Enhanced Macrocell module can be
vielded by changing the timing parameters of the General Macrocell.

The macrocell accepts bus inputs and a svstem clock input. The bus inputs consist

of 44 input signals. The macrocell outputs consists of two signals. One comes [rom the

&4

1:O Architecture, and the other is a tri-state output enable signal. The internal struc-
tures of the Global Macrocell and the General Macrocell are identical except that the
General Macrocell has a feedback select switch and the Global Macrocell has an output
enable switch. The total numbers of signal-flow control switches are the same in both
tvpe of macrocells.

The 10 architecture in the macrocell accepts the ORed logic array signal, an input
clock signal, and a register clear signal. The ORed logic array signal is generated from
8 ORed logic-and-arrays similar to those in the EP310 structure. The input clock signal,
depending on the clock select switch, is either from the quadrant synchronous clock or
from the enable clock logic-and-array output.

The internal structure of the 1 O architecture consists of a D-tvpe flip-flop, logic
gates, and 3 signal flow control switches. Because of the non-disclosure aggreement with
the Altera corporation, the detail structure inside the I/O architecture is not discussed.
In Appendix A, the 1O architecture module of the EP1800 only shows the entity dec-
laration part.!

All the EP1800 internal connecting point information in the JEDEC file are passed
to the entity via the corresponding entity generic. The parameter in the generic of
EP1800 is a character string which can be any user-created JEDEC file name. After the
JEDEC file name is passed into the body of the EP1800, the function READ _JEDEC
will read in the JEDLEC file data stored in the JEDEC file name. The function will assign
this composite type (EPI800_TYPE) JEDEC file data to a constant call BIT_MAP.
Then, like that done for the EP310, the corresponding elements of this composite con-
stant are passed to the corresponding lower level components. For more details please

see Appendix A.

1 Tor more information please contact Prof. CHIN-TIWA LEE, Naval Postgraduate School.
Monterey, CA 93943,

D. GENERAL MACROCELL AND ENHANCED MACROCELL

As mentioned previously, the General Macrocell and the Enhanced Macrocell have
the same structure but different timing parameters. In order to make the model size
more compact and to avoid the redundant VHDL program, these two types of macro-
cells use the same architecture body. The way to define whether the macrocell is a
General Macrocell or an Enhanced Macrocell is by passing different timing parameters

via generic. For Enhanced Macrocell this would look like:

ENHANCED: LOCAL_MACROCELL generic map(P_ARRAY(1 to 10),

IO_ARRAY(1), tlade, tclre, tic)

where the “tlade”, “tclre”, and “tic” are the enhanced timing parameters. The
“P_ARRAY" and the "IO_ARRAY" are array types. They contain the corresponding
product terms and I. O select unit JEDEC file data. The word “enhanced:” in front of
the local_macrocell is referred to as the label of this component instantiation. If there
are more than one identical component instantiation in the same block level, the labels
with different names must be used in front of these instantiations. The General
Macrocell and Enhanced Macrocell have the same expression but different generic val-

ues, i.e., the timing parameters.

E. THE REUSABLE QUADRANT MODEL

Although the Quadrants inside the EP1800 have the same structure. the pin assign-
ment combined with the ordered JEDEC file data makes the generic map assignment of
Quadrant-B and Quadrant-C in the reverse order. In order to reuse the same Quadrant
modecl. in this work, two “reverse functions” are built. Both “reverse functions” can re-
verse the order of the input array. Below is one of the reverse function used in the

EP1800 model.

66

function REVERSE(A: in IO_array_type) return IO
_array_type is
variable rev_array: I0_array_type(1 to A'length);
variable c: POSITIVE := 1;
begin
for i in A'REVERSE_RANGE loop
rev_array(c):= A(i);
c:= c+l;
end loop;
return rev_array;

end REVERSE;

Note that the attribute "A'REVERSE_RANGE" will output the A’s range in the reverse
order. That is, the attribute will have the range A'RIGHT downto A'LEFT if the range
of A is ascending, or A’'RIGHT to A'LEFT if the range of A is descending. These two
reverse functions are put into the package EP1800_PACK.

When using the Quadrant B and C, the reverse function is placed in front of the

generic parameter P_arrav, and 10_array as follows

QUADRANT_B:
QUADRANT generic map(REVERSE(P_array(range)),
REVERSE(IO_array(range)))

-- port map specification

Note that the variables inside the above two REVERSE functions have different types.

In spite of the different tvpes of this two arrayvs, the VHDL will automatically find the

67

corresponding matching function according to the input parameter type. In VHDL this

kind of functions are called overlead functions.

F. THE EP1800 BUS STRUCTURE

The internal bus structure of the EP1800 is more complicate than that of the EP310.
Basically the EP1800 bus can be divided into two kinds, local bus and global bus. The
local bus, as the name implies, only provides a signal path between macrocells within the
same quadrant. The Global bus on the other hand provide the signal path to all the
macrocells inside the EP1800 chip.

The local bus consists of 12 feedback signals from 12 macrocells as shown in
Figure 27 and Figure 28. These local feedback signals can only feed into the macrocells
of that quadrants and cannot be accessed by the other quadrants. The local bus hag two
kinds, one is from the Global Macrocell I 'O Architecture output, and the other is from
the Local Macrocell feedback. The local bus from the Local Macrocell feedback has two
sources, one is from the I,O Architecture output and the other is from the 1,0 pin.
Which one of the two sources to use is decided by the feedback select switch as shown
in Figure 27. This switch is configured by the JEDEC file data.

The global bus can be divided into two classes, one is for the Global Macrocell
feedbacks and the other is for global dedicated input pins. The Global Macrocell feed-
backs come from cach quadrant’s 4 Global Macrocells as shown in Figure 26. Since
there are four quadrants, the total global feedbacks are 16. The global bus can be ac-
cessed by any macrocells within the CP1800.

The EP1800 bus signal assignments arc done at two entity Jevels. The global bus
signals are assigned at the EP1800 entity level as shown in the EP1800 architecture boc
of Appendix A. The local bus signals are assigned at the Quadrant entity level as shown
in the Quadrant architecture body of Appendix A. The global bus and local bus are

concatenated together at the Quadrant entity level as follows

68

inputs <= local_bus & global_bus;

where the symbol "&” means concatenation. Here, this statement will connect the sec-
ond array “global_tus” right after the first array, and form a new array “inputs”. This

new array will be fed to the macrocells.

G. UP-DOWN COUNTER

An application simulation of the EP1800 model was done in this study. The model
was implemented as a 16 bits up/down counter. The counter was constructed by cas-
cading two 8-bit counters together. The 8-bit counter used here was adopted from the
ALTERA’s TTL Macrofunction library [Ref. 8]. Figure 31 shows thel 16-‘bit up-down
counter block diagram and its corresponding function table.

The simulation was done by running a top entity discussed in Chapter 11 called the
“TEST_BENCH". The code of the “TEST_BENCH" and the corresponding result are
in Appendix B. Basically, the “"TEST BENCH" will call the EP1800 chip and provide
the signals and the external JEDEC file name via the port map and the generic map to
the EP1800. The JEDEC file can be created by any EPLD development tool as dis-

cussed in Chapter I11.

69

8 count

i)
D1 A
02 8 QA - Q1
o3 o 0B f——————— Q2
os ° o I,
E an 04
b6 F of ——————o05
07 6 OF b—w— 06
D8 " 6 |— g7
—4G6N QaH a8
DNUP COUNT
CLR
—iCK
8 CounT
Lo
D9 A
bio 8 aa o9
o ¢ o Qo
012 b oc ail
b1a : % o
f o'3 ci3
D15 5 oF 014
Di6 1 a6 ais
‘S6n o 016
DNUP count——
CIR
o
LOAD —
DHUP
RESET
cLock
16 COUNT Function Table
INPUTS QUTPUTS
CLR| CK | &N JDNUP] LD | Die Dis .,, D2 D1} Qie Qis ... Q2 COUNT
H X X H X L L L L L
H X X L X L L L L H
L X X H dis dis ... dz2d1 die d1s dzd: L
L L H L COUNT UP L
L L L L COUNT DOWN L
L H X L HOLD COUNT L
L L H L H H H H H
L | L L L L L L H
H « hight level (steady stale)
L = low level (steady stale)
X = don't care (any input including transitions)
~ transilion {rom low to high level
died ..d d « lsvel of steady-stale inputatinputs D D D

Figure 31.

16-bit up-down counter block diagram

V. CONCLUSIONS

A. GENERAL

In this thesis the general VHDL language features were introduced first. Then, the
discussion of the EP310 and EP1800 structures leads to the modeling of these devices. *
Study revealed a number of problems in modeling these EPLDs. The solution of these
problems were des:ribed and tested. The modeling technique used for EP310 and
EP1800 can be equally applied to the modeling of other types of EPLD with similar
structure. |

It 1s verv difficult to verify the model’s accuracy. One wayv to verify the accuracy
of the model is by ~.nning the manufacture’s hardware test vectors for the corresponding
hardware [Ref. 9]. Since the manufacture’s test vector is not available , in this studv only
the correctness of the individal modules arc tested. If all the modules can work accu-
rately, the whole model can also work accurately.

The EP1800 and the EP1810 have a similar structure. The onlyv difference between
them is that the gencral macrocells in an EP1800 were replaced by the Enhanced
Macrocells in the EP1810. The model of EP1800 with different timing ba.r:;xl1cters can
also be used as the EP18§10 model.

After using the VHDL to model the EPLD hardware, there are a few comments

about the VIIDL language:

1. The VDL language is powerful. The VHDL has a verv rich instruction set, and
1t also has the timing features in it. This makes the VHHDL not onlv a verv good
hardware description language but also a very powerful simulation language.

[o)

The VHDL 1s verv flexible. The language allows the users to declare their ow.l
object types and signal attributes, which makes the modeling ~asier.

(3}

The VIIDL language can describe the hardware from three different views: behav-
oral. data-flow, and structural. The first two views lets the user model the hard-
ware at an abstraction level. The hardware phvsical description is done at the
structure level.

4. A hardware description can be detailed and accurate. The control statement and
timing faciliy discussed in Chapter {1 allows the model to reflect not only the
function of the hardware but also the timing characteristics.

5. The VHDL language statement is easy to comprehend. Since the VHDL is ori-
ginallv used as a description language, it allows meaningful variable and signal
declarations. It also allows modules to be declared as functions. This make the
program code more readable than most of the other languages.

6. The VHDL language learning curve is longer than those of the other languages.
As was discussed before, the VHDL has a very rich instruction set. This sometimes
1s not a merit to the user, since rich instruction set means user need to take a longer
time to learn more language features and rules.

B. PROGRAM SPEED

Like the other hardware simulation, the VHDL simulation takes a lot of time. In
VHDL each simulation cvcle is called a delta cycle. The simulation is event-driven.
which means whenever anv signal changes its value, the simulator will execute the cor-
responding statements once. If the model is too complicated or contains too many de-
tails which vused up more internal signals, it will costs a lot of the CPU time. On the
other hand, if the model is very abstract, 1.e., modeling at the chip level or svstem level,
then the simulation time can be reduced considerably.

The modcls built in this study are gate level models which contain a detailed circuit
description. This means that the models built here need more execution time than the
other approaches. Besides long simulation time, model analyvzing, ‘cgener.ating and
building processes also takes longer time than anticipated.

The method of simulation developed in this work may not be the optimal one. One
possible way to improve the simulation efficiency is to make the product-term algorithm
more efficient. It is at the bottom of the hierarchy of the EPLD model and has the
highest rate of execution.

In order to save programming time and reduce programming errors, the modeler
should thoroughly decompose the target circuit and establish the interface between all

modules via entity declaration before actually programming the architecture body.

C. RECOMMENDATIONS FOR FUTURE STUDY

The studv of this thesis is concerated on the EPLD gate level modeling. But, the
VHDL modeling technique and the modules built in this study can be applied to other
logic system designs. The future study can be directed toward establishing a EPLD

component library to support the increasing EPLD implementation in designs.

APPENDIX A. VHDL SOURCE CODE FOR EP310 AND EP1800
MODELS

A. VHDL SOURCE CODE FOR EPLD_PACKAGE

package EPROM_PACK is
type Tri is ('U','0','1");
type tri_vec is array (NATURAL range<>) of Tri;

function resolver(signal inputs: tri_vec)return Tri;

subtype tri_state is resolver Tri;
type tri_vector is array (NATURAL range<>) of tri_state;

function check_Pterm(P_string
string; x
tri_vector) return BIT;
function bit_to_tri(inbit: bit) return Tri_state;
function tri_to_bit(inbit: Tri_state) return bit;
function trivec_to_bitvec(inbits: tri_vector) return bit_vector;
function bitvec_to_trivec(inbits: bit_vector) return tri_vector;

end EPROM_PACK;
package body EPROM_PACK is

function resolver(signal inputs: tri_vec) return tri is
variable resolved_value: tri:= 'U';
variable flag: integer:= 0;
begin
for i in inputs'range loop
if inputs(i)/='U’' then
flag:= flag+l;
resolved_value: = inputs(i);
end if;
end loop;
assert flag <=1
report "iopin bus collision."
severity FAILURE;
return resolved_value;
end resolver;

function check_Pterm(P_string
string; x
tri_vector) return BIT is
variable P_loc: natural: =0;
variable ou:bit:="1";
variable i:positive:=1;

74

r e

begin
while i <= P_string'length loop
if(P_strin$(i)='o' and P_string(i+1)='0"') then
ou:='0";
exit;
end if;
if(P_string(i)="1' and P_string(i+1)='1')then
P_loc:=P_loc+];
- end if;
-- select the true input.
if(P_string(i)="'1' and P_string(i+1)='0') and
(x((i+1)/2)='U" or x((i+1)/2)="0"') then
ou:='0";
exit;
end if;
-- select the complement input.
if(P_string(i)='0" and P_strin$(1+1)='l') and
(x((i+1)/2)="U" or x((i+1)/2)="1") then
ou:='0";
exit;
end if;
i:=1i+42;
end loop;
if P_loc = ((P_string'length)/2) then
ou:r='1";
end if;
return ou;
end check_Pterm;

function bit_to_tri(inbit: bit) return Tri_state is
begin
if inbit='1"' then
return '1';
else
return '0';
end if;
end bit_to_tri;

function tri_to_bit(inbit: Tri_state) return bit is
begin
if inbit='1" then
return '1';
else
return '0';
end if;
end tri_to_bit;

function trivec_to_bitvec(inbits: tri_vector) return bit_vector is
variable local: bit_vector(inbits'range);
begin
for i in inbits'range loop
if inbits(i)='1" then
local(i):="1";

~J
(1}

else
local(i):='0";
end if;
end loop;
return local;
end trivec_to_bitvec;

function bitvec_to_trivec(inbits: bit_vector) return tri_vector is
variable local: tri_vector(inbits'range);
begin
for i in inbits'ran;e loop
if inbits(i)='1" then
local(i):="1";
else
local(i):='0";
end if;
end loop;
return local;
end bitvec_to_trivec;

end EPROM_PACK;

76

B. VHDL SOURCE CODE FOR EP310 MODEL

package EP310_PACK is
subtype I0_string is string(l to 7);
-- IO_string 1 to 7 are switches inside the io architecture;

type I0_array_type is array(l to 8) of I0_string;
subtype P_string is string(1 to 36);
type P_array_type is array(NATURAL range<>) of P_string;

type EP310_TYPE is record
P_array: P_array_type(l to 74);
I0_array: IC_array_type;

end record;

-- the timing data are for EP310.

constant tin: TIME:=10 ns;

constant tio: TIME:=2 ns;

constant tlad: TIME:=27 ns;

constant tod: TIME:=12 ns;

constant tzx:TIME:=0 ns; -- tzx(here)
constant txz:TIME:=0 ns; -- txz(here)
constant tsu: TIME: =10 ns;

constant th: TIME: =10 ns;

constant tch: TIME: =16 ns;

constant tics:TIME:=4 ns;

constant tfd: TIME:=5 ns;

constant tclr:TIME:=33 ns;

tzx(table)-tod;
txz(table)-~tod;

function READ_JEDEC(F_name
string) return EP310_TYPE,;

end EP310_PACK;

use STD.TEXTIO. all;
package body EP310_PACK is
function READ_JEDEC(F_name
string) return EP310_TYPE is
file F: text is in F_name;
variable temp: line;
variable temp_char: character;
variable IO_temp: string(l to 2730);
variable EP310_MAP: EP310_TYPE;
variable flag: boolean :=true;
variable GOOD,L_flag: boolean:=false;
variable j,k: integer:=1;
begin
-~ cut out the unwanted portion.
while flag loop
readline(F,temp,;
read(temp,temP_char);
if(temp_char="%") then

77

L_flag: =true;
end if;
if(temp_char='L' and L_flag) then
flag:=false;
end if;
assert not endfile(F)
report "The input file is not correct';
end loop;
-- extract the bit map information.
while not endfile(F) loop
readline(F,temp);
j:=temp.all'length;
10_temp(k to k+j-1):=temp.all;
k:= k+j;
end loop;
for i in EP310_MAP.p_array'range loop
EP310_MAP. p_array(i): =I0_temp(1+36*(i-1) to 1i*36),
end loop;
for i in EP310_MAP. I0_array'range loop o
EP310_MAP. I0_array(i):=I0_temp(2665+7*(i-1) to 2664+7%i);
end loop;
return EP310_MAP;

end READ_JEDEC;
end EP310_PACK;
oo e deddedeate doaear el dededede s A ek e e e d e e de s e e e A e sk e dedfe e e e e e de e e
library EP310LIB,SHU;
use EP310LIB.EP310_PACK. all,SHU. EPROM_PACK. all;
entity EP310 is
generic (JEDEC: in string);
port (pin_1,pin_2,pin_3,pin_&4,pin_5,pin_6,pin_7,pin_8,pin_9,pin_11
: in tri_state; pin_12,pin_13,pin_1l4,pin_15,pin_16,pin_17,
pin_18,pin_19: inout tri_state);
end EP310;

library EP310LIB, SHU;
use EP310LIB. EP310_pack. all,SHU. EPROM_PACK. all;
architecture STRUCTURAL of EP310 is

component MACROCELL
generic(macro_P_array: P_array_type(1l to 9));
port(a
tri_vector(1 to 18);
or_out,en: out bit);
end component;

component P_term

generic(P: P_string);

port(x: in tri_vector(l to 18); p_out: out bit);
end component;

component I0_control
generic(I0: Io_string);
port(clk,or_in,preset,clear
bit;
io_pin

78

tri_state;
output, feedback: out tri_state);
end component;

signal macro_in : tri_vector(l to 18);

signal oeloc,orloc:bit_vector(l to 8);

signal local,output,feedback: tri_vector(1 to 8);
signal clear,preset: bit;

constant BIT MAP: EP310_TYPE := READ_JEDEC(JEDEC);

--configuration specifications.
for all:MACROCELL use entity EP310LIB. MACROCELL(behavioral);
for all:P_term use entity EP310LIB.P_term(behavioral);
for all: I0_CONTROL use entity EP310LIB. IO_CONTROL(behavioral_1);
begin
macro_in(1l)<=
macro_in(2)<=
macro_in(3)<=
macro_in(4)<=
macro_in{5)<=

pin_1 after tin;
pin_11 after tin;
pin_2 after tin;
feedback(1);
pin_3 after tin;

macro_in(6)<= feedback(2);
macro_in(7)<= pin_& after tin;
macro_in(8)<= feedback(3);
macro_in(9)<= pin_5 after tin;
macro_in(10)<= feedback(4);
macro_in(11)<= pin_6 after tin;
macro_in(12)<= feedback(5);
macro_in(13)<= pin_7 after tin;
macro_in(14}<= feedback(6);
macro_in(15)<= pin_8 after tin;
macro_in(16)<= feedback(7);
macro_in(17)<= pin_9 after tin;
macro_in(18)<= feedback(8);

-- generate eight macrocells.
M: for i in 1 to 8 generate
macro: MACROCELL generic map(BIT_MAP.P_array(1+9*(i-1) to 9*i))
port map(macro_in,orloc(i),oceloc(i));
end generate;

-- produce D_register preset input.
P: P_term generic map(BIT_MAP.P_array(73))
port map(macro_in,preset);

-- produce D_register reset input.
R: P_term generic map(BIT_MAP.P_array(74))
port map(macro_in,clear);

-- generate eight I0_control element.
CON: for i in 1 to 8 generate
CONTROL: IO_control generic map(BIT_MAP. 10_array(i))
port map(tti_to_bit(pin_1'delayed(tics+tin)),
orloc(i),preset,clear,local(i),output(i),
feedback(i));

79

end generate;

local(l)<= output(1l) after tio+tin when oeloc(1)='1l' else
pin_19 after tiottin;

local(2)<= output(2) after tio+tin when oeloc(2)='1l' else
pin_18 after tio+tin;

local(3)<= output(3) after tio+tin when oeloc(3)='1l' else
pin_17 after tio+tin;

local(4)<= output(4) after tio+tin when oeloc(4)='l' else
pin_16 after tio+tin;

local(5)<= output(5) after tio+tin when oeloc(5)='1' else
pin_15 after tio+tin;

local(6)<= output(6) after tio+tin when oeloc(6)='l' else
pin_14 after tio+tin;

local(7)<= output(7) after tio+tin when oeloc(7)='1' else
pin_13 after tio+tin;

local(8)<= output(8) after tio+tin when oeloc(8)='1l' else
pin_12 after tio+tin;

pin_19<= output(1) after tod when oeloc(1)="'1' else
:U' after tod when oeloc(1)='0' else
u';

pin_18<= output(2) after tod when oeloc(2)='1l' else
:U: after tod when oeloc(2)="'0' else
U’

pin_17<= output(3) after tod when oeloc(3)='1l' else
:U' after tod when oeloc(3)='0' else
u';

pin_16<= output(4) after tod when oeloc(4)='l' else
'U: after tod when oeloc(4)='0" else
'U :

pin_15<= output(5) after tod when oeloc(5)='1' else
:U' after tod when oeloc(5)='0" else
U';

pin_14<= output(6) after tod when oeloc(4)='1l' else
:U: after tod when oeloc(6)='0" else
U

pin_13<= output(7) after tod when oeloc(7)='1' else
:”: after tod when oeloc(7)='0" else
U

pin_12<= output(8) after tod when oceloc(8)='1l' else
'U' after tod when oeloc(8)='0' else

80

', ,
3

end STRUCTURAL;

Fedededededevevededrievtdedertdedeitdededt et dededrdered e de deakede dededede e ve e de e de de e e e e e de e e e e

library EP310LIB,SHU;
use EP310LIB. EP310_pack. all,SHU. EPROM_PACK. all;
entity MACROCELL is
generic (macro_P_array: P_array_type(l to 9));
port(a
tri_vector(1 to 18); or_out,en: out bit);
end MACROCELL;

library EP310LIB,SHU;
use EP310LIB. EP310_pack. all,SHU. EPROM_PACK. all;
architecture behavioral of MACROCELL is
component P_term
generic(P: P_string);
port(x
tri_vector(l to 18); p_out:out bit);
end component;
signal loc: bit_vector(l to 8);
signal en_loc: bit;
for all: P_term use entity EP310LIB. p_term(behavioral);
begin
~- generate 8 P_terms.
P: for i in 1 to 8 generate
element: P_term generic map(macro_P_array(i))
port map(a,loc(i));
end generate;

OE: P_term generic map(macro_P_array(9))
port ma?(a en_loc);

or_out<= when 1oc(1)— 1' or loc(2)="1"' or loc(3)="1"'

loc(h)— 1' or loc(5)="1" or loc(6)='1' or
locg7?='1' or loc(8)="1' else
0%
en<= en_loc after tzx;
end behavioral;
e e el dede e e e e e e de e e g e et e e de e e e dede e e e
library EP310LIB,SHU;
use EP310LIB.EP310_pack.all,SHV.EPROM_PACK.all;
entity io_control is
generic(I0: I0_string:="0000000");
port(clk or 1n,preset clear
bit:='0';io_pin: in tri_state:='U";
output, feedback: out tri_state);
end io_control;

library EP310LIB,SHU;
use EP310LIB.EP310_pack.all,SHU. EPROM_PACK. all;
architecture BEHAVIORAL_1 of io_control is
component D_register
generic(IO0: I0_string:="0000000");
port(d,ck,preset,clear: in bit:='0';q: inout bit);
end component;

81

or

signal Q _loc:BIT:='0';
for all:d_register use entity EP310LIB.d_register(behavioral_2);
begin
D1:D_register generic map(I0)
port map (or_in,clk,preset,clear,Q loc);

process(io_pin,or_in,Q_loc)
begin
-=- QUTPUT SELECT.

if I0(1)='0"' then

output<= bit_to_tri(not or_in) ;
elsif 10(2)='0" then

output<= bit_to_tri(or_in) ;
elsif I0(3)='0" then

output<= bit_to_tri(not Q_loc) ;
elsif I0(4)='0" then

output<= bit_to_tri(Q_loc) ;
else

output<= 'U';
end if;

-- FEEDBACK SELECT.
if 10(5)='0"' then
feedback<=bit_to_tri(or_in) after tfd;
elsif I0(6)='0' then
feedback<=bit_to_tri(Q _loc) after tfd;
elsif 10(7)='0"' then
feedback<=io_pin;
else
feedback<= 'U’;
end if;
end process ;
end BEHAVIORAL_1;
Jevedededr seaese e vide s et dedetedrab e sk ek vk e e e de e e ke el e e e e e e deae e b e e ke e ke e
library EP310LIB,SHU;
use EP310LIB.EP310_PACK. all,SHU. EPROM_PACK. all;
er.city D_register is
generic(I0: IO_string:="1111111");
port(d,ck,preset,clear
bit:='0"'; q:out bit);
end D_register;

library EP310LIB, SHU;
use EP310LIB.EP310_PACK. all,SHU. EPROM_PACK. all;
architecture BEHAVIORAL_2 of D_register is
begin
EDGE_TRIGGERED_D:
block ((ck='1"' and not ck'stable) or clear='1")
signal s: bit;
begin

-- check setup time of D_register.
assert ck'stable or (ck='0"') or d'stable(tsu) or (clear="1") or
(I0(3)="1" and 10(4)="1"' and IO(6)="'1")
-- not(not ck'stable and (ck='1"') and not d'stable(tsu)
-- and (clear='0")) and (I10(3)='0"' or I0(4)='0"' or I0(6)='0")

report "Setup Time Failure."

severity FAILURE;

-~ check hold time of d_register.
assert ck'delayed(th)'stable or (ck'delayed(th)='0') or
d'stable(th) or (clear='1') or
(1I0(3)="'1"' and I0(4)='1' and 10(6)="1")
-- not (not ck'delayed(th)'stable and (ck'delared(th)='0') and
-- not d'stable(th) and (clear='0') and (I0O(3)='0' or
-- 10(4)='0" or 10(6)='0"'))
report "Hold Time Failure."
severity FAILURE;

-~ check setuP time of D_register. (preset)
assert ck stable or (ck='0') or preset'stable(tsu) or (clear='1") or
(I0(3)="1" and I0(4)="1' and I0(6)="1")
-- not(not ck'stable and (ck='1') and not ?reset'stable(tsu)
-- and (clear='0"') and (I0(3)="'0' or I0(4)='0' or I0(6)="0"))
report "Setup Time Failure."
severity FAILURE;

-- check hold time of d_register.(preset)
assert ck'delayed(th)'stable or (ck'delayed(th)='0') or
preset'stable(th) or (clear='1') or
(10(3)="1" and I0(4)='1' and 10(6)='1")
-- not (not ck'delayed(th)'stable and (ck'delayed(th)='0"') and
-- not preset'stable(th) and (clear='0') and (I0(3)='0' or
-- 10(4)="'0" or 10(6)='0"))
report "Hold Time Failure."
severity FAILURE;

-- check minimum pulse width of d_register.
assert ck'stable or (ck='1') or ck'delayed'stable(tch) or (I0(3)='1'
and 10(4)="'1"' and I0(6)='1")
~- not (not ck'stable and ck='l' and ck'delayed'stable(tch) and
== (I0(3)='0" or I0(4)='0' or 10(6)="0")) o
report "Minimum Pulse Width Failure."
severity FAILURE;

s<= guarded 'l' when (preset='1' and clear='0') else
d when (clear='0' and preset='0' and ck='1l' and not ck'stable)
else
'0' after tclr when clear='1' else
S5
q<= s;
end block EDGE_TRIGGERED_D;
end BEHAVIORAL_2;
Jedededsdedrdededededodededededrdedededededededededdodedededededededededededededede dededededededededededede
library EP310LIB,SHU;
use EP310LIB.EF310_pack. all,SHU. EPROM_PACK. all;
entity P_term is
generic(P: P_string);
port(x: in tri_vector(l to 18); p_out: out bit);
end P_term;

83

library EP310LIB,SHU;
use EP310LIB.EP310_pack. all,SHU. EPROM_PACK. all;

architecture behavioral of P_term is
begin
process(Xx)
variable c:BIT;
begin
c:=check_Pterm(P,x);
p_out<= ¢ after tlad;
end process;
end behavioral;

84

C. VHDL MODEL FOR EP1800.

library SHU;
use STD.TEXTIO. all,SHU. EPROM_PACK. all;
package EP1800_pack is

subtype IO_string is string(1l to 5);
-- I0_string 1 to 7 are switches inside the io architecture;

type I0_array_type is array(NATURAL range<>) of IO_string;

subtype P_string is string(1 to 88);
type P_array_type is array(NATURAL range <>) of P_string;
subtype input_line is tri_vector(l to 44);

type EP1800_TYPE is record
P_array: P_array_type(1l to 480);
I0_array: 10_array_type(l to 48);
end record;

-- all the time constants are for epl1800-2;

constant tin: TIME: =10 ns;
constant tio: TIME:=15 ns;-- tio(here):= tin(table)+tio(table);
constant tlad: TIME:=40 ns;
constant tlade: TIME: =35 ns;
constant tod: TIME: =15 ns;
constant tzx: TIME:=15 ns;
constant txz:TIME:=15 ns;
constant tsu: TIME: =12 ns;
constant th: TIME: =30 ns;
constant tch: TIME: =24 ns;
constant tic: TIME:=40 ns;
constant tice:TIME:=35 ns;
constant tics:TIME:=4 ns;
constant tfd: TIME:=10 ns;
constant tclr:TIME:=40 ns;
constant tclre: TIME:= 35 ns;

-- here we demonstrate overload function.(which with same function name

-- but differt input type).
function REVERSE(A

P_array_type(1l to 120)) return p_array_type;
function REVERSE(A

I0_array_type) return IO_array_type;
function FIND(A

I0_string; position: in natural)

return character;

function READ_JEDEC(F_name

string) return EP1800_TYPE;

end EP1800_PACK;

package body EP1800_PACK is
function REVERSE(A

P_array_type(1l to 120)) return P_array_type is
variable rev_array: p_array_type(l to 120);
begin
for i in 1 to 12 loop
rev_array(121-10%(i) to 120-10*(i-1))
:=A(14+10%(i-1) to 10%(i));
end loop;
return rev_array;
end reverse;

function REVERSE(A
I0_array_type) return I0_array_type is
variable rev_array: 10_array_type(l to A'length);
variable c: positive:=1;
begin
for i in A'reverse_range loop
rev_array(c):= A(i);
c:= c+l;
end loop;
return rev_array;
end reverse;

function FIND(A
I0_string; position: in natural)
return character is
begin
return A(position);
end FIND;

function READ_JEDEC(F_name
string) return EP1800_TYPE is
file F: text is in F_name;
variable temp: 1line;
variable temp_char: character;
variasble I0_temp: string(l to 42500);
variable EP1800_MAP: EP1800_TYPE;
variable flag: boolean :=true;
variable GOOD,L_flag: boolean:=false;
variable j,k:integer:=1;
begin
-- cut out the unwanted portion.
while flag loop
readline(F,temp);
read(temp,tem?_char);
if(temp_char='*') then
L_flag: =true;
end if;
if(temp_char='L' and L_flag) then
flag:=false;
end if;
assert not endfile(F)
report "The input file is not correct';
end loop;
-- extract the bit map information.
while not endfile(F) loop
readline(F,temp);

86

j:=temp. all'length;

10_temp(k to k+j-1):=temp. all;

k: = k+j;
end loop;
for i in EP1800_MAP.p_array'range loop

EP1800_MAP. p_array(i): =I0_temp(1+88*(i-1) to 1*88);
end loop;
for i in EP1800_MAP. io_array'range loop

EP1800_MAP. I0_array(i):=I0_temp(4224145%(i-1) to 42240+ i*5);
end loop;
return EP1800_MAP;

end READ_JEDEC;
end EP1800_pack;
Fedededededede e dekdedrededededededededededededodedededededededededdolriodededededest dedededededriede dodededededededede dede e
library EP1800LIB, SHU;
use EP1800LIB. EP1800_PACK. all, SHU, EPROM_PACK. all;
entity EP1800 is
generic (JEDEC : in string);
port (pin_14,pin_15,pin_16,pin_17,
pin_19,pin_20,pin_21,pin_22,
pin_48,pin_49,pin_50,pin_51,
pin_53,pin_54,pin_55,pin_56
tri_state:='U";
pin_2,pin_3,pin_4,pin_5,pin_6,pin_7,
pin_8,pin_9,pin_10,pin_11,pin_12,pin_13,
pin_23,pin_24,pin_25,pin_26,pin_27,pin_28,
pin_29,pin_30,pin_31,pin_32,pin_33,pin_34,
pin_36,pin_37,pin_38,pin_39,pin_40,pin_A41,
pin_&42,pin_43,pin_44,pin_45,pin_46,pin_47,
pin_57,pin_58,pin_59,pin_60,pin_61,pin_62,
pin_63,pin_64,pin_65,pin_66,pin_67,pin_68
:inout tri_state:='U');
end EP1800;

library EP1800LIB, SHU;
use EP1800LIB. EP1800_pack.all, SHU.EPROM_PACK. all;
architecture STRUCTURAL of EP1800 is

component QUADRANT
generic(Q_P_array: P_array_type(1l to 120);
Q_IO_array: I0_array_type(l to 12});
port(global_bus: in tri_vector(1l3 to 44);
quad_clk: in bit;
io_l,io_2,i0_3,i0_4,io_5,i0_6,1i0_7,
io_8: inout tri_state;
quad: out tri_vector(l to &4));
end component;

signal global_bus: tri_vector(13 to 44)

B V10101610161F1016101010101916181016101818361016101916:91616101 A1
signal quad_A,quad_B,quad_C,quad_D: tri_vector(1l to 4);
constant BIT_MAP: EP1800_TYPE:= READ_JEDEC(JEDEC);

--configuation specification.

87

for all: QUADRANT use entity EP1800LIB. QUADRANT(STRUCTURAL);
begin
-- Due to the proprietary reason, the global bus assignment statements
-=- were removed.

pin_10<= quad_A(1l) after tod;-- (pin_10);

pin_11<= quad_A(2) after tod; ~- (pin_11);

pin_12<= quad_A(3) after tod; ~- (pin_12);

pin_13<= quad_A(4) after tod;~- (pin_13);

pin_26<= quad_B(1) after tod;~- (pin_26);

pin_25<= quad_B(2) after tod;~-- (pin_25);

pin_24<= quad_B(3) after tod; -- (pin_24);

pin_23<= quad_B(4) after tod;~- (pin_23);

pin_&4<= quad_C(1) after tod; -- (pin_44);

pin_45<= quad_C(2) after tod; -- (pin_45);

pin_&46<= quad_C(3) after tod;~- (pin_46);

pin_&47<= quad_C(4) after tod; -- (pin_47);

pin_60<= quad_D(1) after tod;-- (pin_60);

pin_59<= quad_D(2) after tod;~-- (pin_59);

pin_58<= quad_D(3) after tod;-- (pin_58);

pin_57<= quad_D(4) after tod; -- (pin_57);

QA: QUADRANT
generic map(BIT_MAP.P_array(l to 120),
BIT MAP. {O_array(1l to 12))
port map(global_tus,tri_to_bit(pin_17),pin_2,pin_3,
pin_&,pin_5,pin_6,pin_7,pin_8,pin_9,
quad_A);

QB: QUADRANT
generic map(reverse(BIT_MAP.P_array(121 to 240)),
reverse(BIT_MAP. I0_array(13 to 24)))
port map(global_bus,tri_to_bit(pin_19),pin_34,pin_33,
pin_32,pin_31,pin_30,pin_29,pin_28,pin_27,
quad_B);

Qc: QUADRANT
generic map(BIT_MAP.P_array(241 to 360),
BIT_MAP. IO_array(25 to 36))
port map(global_bus,tri_to_bit(pin_51),pin_36,pin_37,
pin_38,pin_39,pin_40,pin_41,7 ¢ *2,pin_43,
quad_C);

QD: QUADRANT
generic map(reverse(BIT_MAP.P_array(361 to 480)),
reverse(BIT_MAP. I0_array(37 to 48)))
port map(global_bus,tri_to_bit(pin_53),pin_68,pin_67,
pin_66,pin_65,pin_64,pin_63,pin_62,pin_61,
quad_D);

end STRUCTURAL;
dFededededesedededrdodededede et ddedededede s deat e dedod e dedede e deede ok e
library EP1800LIB, SHU;
use EP1800LIB. EP1800_PACK. all, SHU.EPROM_PACK. all;
entity QUADRANT is
generic(Q_P_array: P_array_type{l to 120);
Q_IO_array: I10_array_type(l to 12));

88

port (global_bus: in tri_vector(13 to 44);
quad_clk: in bit;
io_l,io_2,i0_3,i0_&,io_5,i0o_6,i0_7,
io_8: inout tri_state;
quad: out tri_vector(l to 4));

end QUADRANT;

library EP1800LIB, SHU;
use EP1800LIB.EP1800_PACK. all, SHU. EPROM_PACK. all;
architecture STRUCTURAL of QUADRANT is

component LOCAL_MACROCELL
generic(P_array: P_array_type(1l to 10); I0: IO_string;
t_lad: TIME: =tlad; t_clr:TIME:=tclr;
t_ic: TIME: =tic);
port(inputs
input_line; quad_clk: in bit;
oe,output: out bit);
end component;

component GLOBAL_MACROCELL
generic(P_array: P_array_type(l to 10); IO: IO_string;
t_lad: time:=tlade; t_clr:time:=tclr;
t_ic:time:=tic);
port(inputs
input_line; quad_clk: in bit;
oe,output: out bit);
end component;

signal oe,M_output: bit_vector(l cto 12);
signal local_bus: tri_vector(1 to 12);
signal local: tri_vector(1 to 8);
signal inputs: input_line;
for all: LOCAL_MACROCELL
use entity EP1800LIB. LOCAL_MACROCELL(structural);

for all: GLOBAL_MACROCELL
use entity EP1800LIB. GLOBAL_MACROCELL(structural®,

begin
inputs<= local_bus & global_bus;
M1_E: LOCAL_MACROCELL generic map(Q_P_array(} to 10),Q_IO_array(1),
tlade,tclrc,tice)
port map (inputs,quad_clk,
oe(1),M output(l));
M2_E: LOCAL_MACROCELL generic map(Q_P_array(1l to 20),Q_IO_array(2),
tlade,tclre,tice)
port map (inputs,quad_clk,
oe(2),M_output(2));

M3_E: LOCAL_MACROCELL generic map(Q_P_array(21 to 30),Q_I0_array(3),

89

M4_E:

M5_GE:

Mé6_GE:

M7_GE:

M8_GE:

M9_GL:

+410_GL:

M11_GL:

M12_GL:

tlade,tclre,tice)
port map (inputs,quad_clk,
oe(3),M_output(3));

LOCAL_MACROCELL generic map(Q_P_array(31 to 40),Q _IO_array(4),
tlade,tclre,tice)
port map (inputs,quad clk,
oe(4),M output(&)),

LOCAL_MACROCELL generic map(Q_P_array(41l to 50),Q _I0_array(5))
port map (inputs,quad_clk,
oe(5),M_output(5));

LOCAL_MACROCELL generic map(Q_P_array(51 to 60),Q_IO_array(6))
port map (inputs,quad_clk,
oe(6) ,M_output(6));

LOCAL_MACROCELL generic map(Q_P_array(61 to 70),Q I0_ array(?))
port map (inputs,quad_clk,
oe(7),M_output(7));

LOCAL_MACROCELL generic map(Q _P_array(71 to 80),Q IO_array(8))
port map (inputs,quad_clk,
oe(8),M_output(8));

GLOBAL_MACROCELL generic map(Q_P_array(81 to 90),Q _IO_array(9))
port map (inputs,quad_clk,
oe(9),M_output(9));

GLOBAL_MACROCELL
generic map(Q _P_array(91 to 100),Q _IO_array(10))
port map (inputs,quad_clk,
oe(10),M_output(10));

GLOBAL_MACROCELL
generic map(Q_P_array(101 to 110), Q_IO array(ll))
port map (1nputs,quad clk,
oe(11),M output(ll)),

GLOBAL_MACROCELL
generic map(Q_P_array(111 to 120),Q _IO_array(12))
port map (inputs,quad_clk,
oe(12),M_output(12));

io_1<= bit_to_tri(M_output(l)) after tod when oe(1)='1' else

:U: after tod when oe(1)='0' else
U’

io_2<= bit_to_tri(M_output(2)) after tod when oe(2)='1' else

!

'U: after tod when oe(2)='0' else

'U,

io_3<= bit_to_tri(M_output(3)) after tod when oe(3)='1"' else

'U: after tod when oe(3)='0' else
(O

90

io_4<= bit_to_tri(M_output(4)) after tod when oe(4)='1l' else

io_5<= bit_to_tri(M_output(5)) after tod when oe(5)="1"' else

io_6<= bit to _tri(M_output(6)) after tod when oce(6)='1' else

'U' after tod when oe(4)='0' else
Uy
'U' after tod when oe(5)='0' else
‘v
'U' after tod when oe(6)='0' else
U

io_7<= bit to _tri(M_output(7)) after tod when oe(7)='1' else

'U' after tod when oe(7)='0' else
'u'y
io_8<= bit_to_tri(M_output(8)) after tod when oe(8)="1' else
:U: after tod when oe(8)='0' else
U

local(l)<=

local(2)<=

local(3)<=

local(4)<=

local(5)<=

local(6)<=

local(7)<=

local(8)<=

local_bus(

bit_to_tri(M_output(1)) after
io_1 after tio;

bit_to_tri(M_output(2)) after
io_2 after tio;

bit_to_tri(M_output(3)) after
io_3 after tio;

bit_to_tri(M_output(4)) after
io_4 after tio;

bit_to_tri(M_output(5)) after
io_5 after tio;

bit_to_tri(M_output(6)) after
io_6 after tio;

bit_to_tri(M_output(7)) after
io_7 after tio;

bit_to_tri(M_output(8)) after
io_8 after tio;

tio

tio

tio

tio

tio

tio

tio

tio

when

when

when

when

when

when

when

when

oe(1)="1"
oe(2)="1"
oe(3)="1"
oe(4)="1"
oe(5)="1"
oe(6)="1"
oe(7)="1'
oe(8)="1"

1)<= local(l) when find(Q_IO_array(1),4)='0" else
bit_to_tri(M_output(1l)) after tfd;

local _bus(2)<= local(2) when find(Q_IO_array(2),4)='0' else
bit_to_tri(M_output(2)) after tfd;

local_bus(3)<= local(3) when find(Q_IO_array(3),4)='0"' else
bit_to_tri(M_output(3)) after tfd;

local_bus(4)<= local(4) when find(Q_IO_array(4),4)='0" else
bit_to_tri(M_output(4)) after tfd;

91

else

else

else

else

else

else

else

else

local_bus(5)<= local(5) when find(Q_IO_array(5),4)='0' else
bit_to_tri(M_output(5)) after tfd;

local_bus(6)<= local(6) when find(Q_IO_array(6),4)='0' else
bit_to_tri(M_output(6)) after tfd;

local_bus(7)<= local(7) when find(Q_IO_array(7),4)='0"' else
bit_to_tri(M_output(7)) after tfd;

local_bus(8)<= local(8) when find(Q_IO_array(8),4)='0' else
bit_to_tri(M_output(8)) after tfd;

local_bus(9)<= bit_to_tri(M_output(9)) after tfd;

local_bus(10)<= bit_to_tri(M_output(10)) after tfd;
local_bus(11)<= bit_to_tri(M_output(11)) after tfd;
local_bus(12)<= bit_to_tri(M_output(12)) after tfd;

quad(1)<= bit_to_tri(M_output(9)) when oe(9)="'1" else
:U: when oe(9)='0"' else
u’;

quad(2)<= bit_to_tri(M_output(10)) when oe(10)='1' else
:U: when o0e(10)='0' else
U’;
quad(3)<= bit_to_tri(M_output(11)) when oe(11)='1' else
:U: when ce(11)="'0' else
U
quad(4)<= bit_to_tri(M_output(12)) when oe(12)='1" else
:U: when o0e(12)="'0' else
U -
end STRUCTURAL;
Fededededededededede Rt dedodede dodededede dedededededededededede e
library EP1800LIB, SHU;
use EPlSOOLIB.EPlSOO_p;ck.all, SHU. EPROM_PACK. all;
entity LOCAL_MACROCELL is
generii(s_array: E_grray_iype(l to l?); I0: IO_string;
t_lad: time:=tlad; t_clr: time:=tclr;
t_ic:time:=tic);
port(inputs
input_line; quad_clk
bit;
oe,output:out bit);
end LOCAL_MACROCELL;

library EP1800LIB, SHU;
use EP1800LIB.EP1800_pack.all, SHU.EPROM_PACK. all;
architecture STRUCTURAL of LOCAL_MACROCELL is

component P_term
generic(P: P_string; t_lad: time:=tlad);
port(x
input_line; p_out:out bit);
end component;

component I0_CONTROL
generic(I0: IO_string; t_clr:time:=tclr);
port(or_in,clk,clear
bit;
output: out bit);
end component;

signal local: bit_vector(1l to 10);
signal or_out,clk: bit;

for all: P_term use entity EP1800LIB. P_term(behavioral);
for all: IO_CONTROL use entity EP1800LIB. IO_CONTROL(behavioral);
begin

P1: P_term generic map(P_array(1),t_lad)
port map(inputs,local(l));
P2: P_term generic map(P_array(2),t_lad)
port map(inputs,local(2));
P3: P_term generic map(P_array(3),t_lad)
port map(inputs,local(3));
P4: P_term generic map(P_array(4),t_lad)
port map(inputs,local(4));
P5: P_term generic map(P_array(5),t_lad)
port map(inputs,local(5));
P6: P_term generic map(P_array(6),t_lad)
port map(inputs,local(6));
P7: P_term generic map(P_array(7),t_lad)
port map{inputs,local(7));
P8: P_term generic map(P_array(8),t_lad)
port map(inputs,local(8));
CLR_P: P_term generic map(P_array(9),t_lad)
port map(lnputs 1ocal(9)),

OECK_P: P_term generic map(P_array(10),t_ic)
port map(inputs,local(10));

or_out<='1"' when (local(1l) or local(2) or local(3)
or local(4) or local(5) or local(6)
?rlloca1(7) or local(8))='1l' else
0';

OECK_S: process(quad_clk,local(10))
begin
if 10(2)='0" then
clk<= quad_clk after tics;
oe<= local(1l0) after tzx;
else
clk<= local(10);
oe<='1"' after tzx;
end if;
end process OECK_S;

I01: IO_CONTROL generic map(IO0,t_clr)
port map(or_out,clk,local(9),output);

end STRUCTURAL;
SR Vel e Ve dle e e de e v de de e de e s e Sl e e de e e e e e e e Yo e e e e e e e e de e o

93

library EP1800LIB, SHU;
use EP1800LIB. EP1800_pack.all, SHU.EPROM_PACK. all;
entity GLOBAL_MACROCELL is
generic(P_array: P_array_type(l to 10); I0:IO_string;
t_lad: time: =tlad; t_clr: time:=tclr;
t_ic:time:=tic);
port(inputs
input_line; quad_clk
bit;
oe,output: out bit);
end GLOBAL_MACROCELL;

library EP1800LIB, SHU;
use EP180OLIB. EP1800_pack. all, SHU.EPROM_PACK. all;
architecture STRUCTURAL of GLOBAL_MACROCELL is

component P_term
generic(P: P_striiug; t_lad:time:=tlad);
port(x: in input_line; p_out: out bit);
end component;

component I0_CONTROL
generic(I0: I0_string; t_clr:time:=tclr);
port(or_in,clk,clear: in bit;
output: out bit);
end component;

signal local: bit_vector(l to 10);
signal or_out,clk,oceck: bit;

for all: P_term use entity EP1800LIB. P_term(behavioral);
for all: IO_CONTROL use entity EP1800LIB. I0_CONTROL(behavioral);
begin

P1: P_term generic map(P_array(1))
port map(inputs,local(l));
P2: P_term generic map(P_array(2))
port map(inputs,local(2));
P3: P_term generic map(P_array(3))
port map(inputs,local(3));
P4 P_term generic map(P_array(4))
port map(inputs,local(4));
P5: P_term generic map(P_array(5))
port map{inputs,local(5));
Pé: P_term generic map(P_array(6))
port map(inputs,local(6));
P7: P_term generic map(P_array(7))
port map(inputs,local(7));
P8: P_term generic map(P_array(8))

port map(inputs,local(8));
CLR_P: P_term generic map(P_array(9))

port map{inputs,local(9));
OECK_P: P_term generic map(P_array(10),tic)

port map(inputs,local(10));

or_out<='1' when (local(1l) or local(2) or local(3)
or local(4) or local(5) or local(6)

94

?r'loca1(7) or local(8)) ='1' else
0

OECK_S: process(quad_clk,local(10))
begin
if 10(2)='0' then
clk<= quad_clk after tics;
oeck<= local(10);
else
clk<= local(10);
oeck<='1";
end if;
end process OECK_S;

OE_S: process(oeck)
begin
if 10(4)='0"' then
oe<= oeck;
else
oe<= '0';
end if;
end process OE_S;

I0_1: IO_CONTROL generic map(I0)
port mapf{or_out,clk,local(9),output);

end STRUCTURAL;
s vedbedesede e iede st e defe e de e de st e e Fe e de de e e dede e e dede e ke dedtr e e e e e ok
library EP1800LIB, SHU;

use EP180GOLIB.EP1800_pack.all, SHU.EPROM_PACK. all;

entity I0_CONTROL is
generic(I0: I0_string; t_clr:time:=tclr);
port(or_in,clk,clear

bit; output:out bit);

end I0_CONTROL;

-- For architecture body source code please contect Prof. CHIN-HWA LEE,
-- Naval Postgraduate School, Monterey, CA, 93943.

Feskdlledleste s e e bbbk sl vk e sk de s de e de b ok sk sk s sk e ol b e e e e St e e st v s sl e sk ke e e e e ok

library EP1800LIB, SHU;
use EP1800LIB.EP1800_pack.all, SHU.EPROM_PACK. all;
entity D_register is
generic(I0: character:='0"'; t_clr: time:=tclr);
port(d,clk,clear
bit:='0"'; q:out bit);
end D_register;

library EP1800LIB, SHU;
use EP180OLIB.EP1800_pack.all, SHU.EPROM_PACK. all;
architecture BEHAVIORAL of D_register is
begin
EDGE_TRIGGERED_D:
block ((clk='1" and not clk'stable) or clear='1")
signal s: bit;
begin

95

-- check next setup time of D_register.

assert clk'stable or (clk='0") or d'stable(tsu) or
(clear='1') or 1I0="1'
-- not(not clk'stable and (clk='1') and not d'stable(tsu)
-- and (clear='0')) and 10='0')
report "Setup Time Fialure."
severity FAILURE;

== check hold time of d_register.
assert clk'delayed(th) 'stable or (clk'delayed(th)='0') or
d'stable(th) or
(clear='1"') or I0="1"
-- not (n.c clk'delayed(th)'stable and (clk'delared(th)='0') and
-- not d'stable(th) and (clear='0') and 10='0')
report "Hold Time Failure."
severity FAILURE;

-- check minimum pulse-width of d_register. .]
assert clk'stable or (clk='1"') or clk'delayed'stable(tch) or I0="1'
-- not'(?lk'stable and (clk='1' and clk'delayed'stable(tch) and
-- 10='0")
report "Minium pulse width failure"
severity FAILURE;

s<= guarded '0' after t_clr when clear='1l' else

d when (clear='0' and clk='1l' and not clk'stable) else
S5

q<= s;

end block EDGE_TRIGGERED_D;
end BEHAVIORAL;
FerkdeFere deotedede st ekt de s e e s ek e e e e e e e e e e e e o
library EP1800LIB, SHU;
use EP180OLIB.EP1800_pack.all, SHU.EPROM_PACK. all;
entity P_term is
generic(P:P_string; t_lad:time:=tlad);
port(x
input_line; p_out:out bit);
end P_term;

library EP180C0OLIB, SHU;
use EP180OLIB.EP18CO_pack. all, SHU.EPROM_PACK. all;
architecture behavioral of P_term is
begin
process(x)
variable c:BIT;
begin
c:=check_Pterm(P,x);
p_out<= c after t_lad;
end process;

end behavioral;
sededederfededereveseatdesestievededededestodostaf de st b dedede e dede de et ek

APPENDIX B. VHDL CODE FOR TEST_BENCH

A. VHDL SOURCE CODE FOR TOP ENTITY DECLARATION.

-~ NOTE: In the top-level design unit there can not have TIME generic
-- parameter, other wise there will have a8 error message in model

-- generate(MG) state and the MG process will stop without creating any
-- object file.

entity TEST_BENCH is
generic (ck_rate: integer:= 20000000;
term_sim: integer:= 10;
delay: integer:=1000); -- delay unit ns.
end TEST_BENCH;

97

B. TEST_BENCH ARCHITECTURE BODY FOR EP310

library EP310LIB,SHU;
use EP310LIB. ep310_pack. all,SHU. EPROM_PACK. all;
architecture ep310 of test_bench is
component ep310 generic(JEDEC: in string);
port(pin_1,pin_2,pin_3,pin_&4,pin_5,pin_6,pin_7,
pin_8,pin_9,pin_11: in tri_state;
pin_12,pin_13,pin_14,pin_15,pin_16,pin_17,
pin_18,pin_19: inout tri_state);
end component;

signal pin_1,pin_2,pin_3,pin_é4,pin_5,pin_6,
pin_7,pin_8,pin_9,pin_11: tri_state:= 'U';

signal pin_12,pin_13,pin_14,pin_15,pin_16,
pin_17,pin_18,pin_19: resolver tri_state:= 'U';

signal input: tri_vector(1 to 10);

signal io: tri_vector(1 to 8);

signal count: integer :=0;

signal clock: bit:='0Q';

for all : ep310 use entity EP310LIB. ep310(structural);
begin

EP1: EP310 generic map(''cntr7. jed")
port map(pin_1l,pin_2,pin_3,pin_&,pin_5,pin_6,pin_7,
pin_8,pin_9,pin_11,
pin_12,pin_13,pin_14,pin_15,pin_16,pin_17,
pin_18,pin_19);

CLOCK_GENERATOR: process(clock)

begin
clock<= not clock after 1 sec / ck_rate;
pin_1<= bit_to_tri(clock);

end process CLOCK_GENERATOR;

pin_3<='1"; --after 2 sec /ck_rate; ENABLE.
pin_2<='Q'; --after 1 sec/ck_rate; RESET.

TERMINATE: process(count)
begin
assert (count /= term_sim)
report "simulation is done.";
end process TERMINATE;

TO_INPUT: block(clock = '1")
begin
pin_19<= guarded '1';
end block IO_INPUT;
count<= count+l after delay*ns;

input<= pin_1 & pin_2 & pin_3 & pin_3 & pin_5 & pin_6 & pin_7

98

& pin_8 & pin_9 & pin_11;
io <= pin_12 & pin_13 & pin_14 & pin_15 & pin_16 & pin_17 & pin_18
& pin_19;
end ep310;

99

e

DEC-05-1988 17:18:20 VHDL Report Generator PAGE 1
Vhdl Simulation Report
Kernel Library Name: <<SHU>>TEST_EP3
Kernel Creation Date: DEC-05-1988
Kernel Creation Time: 17:11:16
Run Identifer: 1
Run Date: DEC-05-1988
Run Time: 17:11:16
Report Control Language File: TEST_EP310.RCL
Report Output File : TEST_EP3.RPT
Max Time: 9223372036854775807
Max Delta: 2147483646
Report Control Language :
simulation_report s is
begin
page_width is 72;
select_signal : "c¢"=>pin_19;
select_signal : "clk"=>pin_1;
select_signal : Pin_2,pin_3;
select_signal : "'pin_12 - pin_18"=> io(1 to 7);
sample_signals by_event in ns;
end;
Report Format Information :
Time is in NS relative to the start of simulation
Time period for report is from 0 NS to End of Simulation
Signal values are reported by event (' ' indicates no event)

100

DEC-05-1988 17:18:20 VHDL Report Generator PAGE 2

TIME |=-====e-ccececccccccnnana SIGNAL NAMES-----c=c-smecccccccccncacaca"
(NS) c clk PIN_2 PIN_3 pin_12 - pin_18(1 TO 7)

O IU| 'U' 'U' ‘U' "UUUUUUU"
+1 lol '01 lll

39
+1 "0000000"
50
+1 '1' |1|
76
+1 "0000001"

+1 "0000010"

+1 "0000011"

376
+1 "0000100"

450

476
+1
500
+1 o'
550 |
+1 "1'
576
+1 "0000110"
600
+1 'o'
650
+1
676
+1
700
+1
750
+1
776

+

[
-

[
-

"0000101"

"0000111"

101

102

]
'0001000"

C. TEST_BENCH ARCHITECTURE BODY FOR EP1800

library EP1800LIB, SHU;

use EP1800LIB. EP1800_PACK. all, SHU. EPROM_PACK. all;

architecture epl800 of test_bench is

component EP1800
generic (JEDEC : in string);
port (pin_1l4,pin_15,pin_16,pin_17,

pin_19,pin_20,pin_21,pin_22,
pin_48,pin_49%,pin_50,pin_51,
Pin_53,pin_54,pin_55,pin_56

tri_state:='0";
pin_2,pin_3,pin_4,pin_5,pin_6,pin_7,
pin_8,pin_9,pin_10,pin_11,pin_12,pin_13,
pin_23,pin_24,pin_25,pin_26,pin_27,pin_28,
pin_29,pin_30,pin_31,pin_32,pin_33,pin_34,
pin_36,pin_37,pin_38,pin_39,pin_40,pin_41,
pin_42,pin_43,pin_&44,pin_45,pin_46,pin_47,
pin_57,pin_58,pin_59,pin_60,pin_61,pin_62,
pin_63,pin_64,pin_65,pin_66,pin_67,pin_68
:inout tri_state:='0");

end component;

signal DNUP,CLOCK,LOAD,RESET
ttri_state:='0";

signal Q: tri_vector(l to 16):="0000000000000000";

signal D: tri_vector(1 to 16):="0000000000000000";

signal ck: bit :='0";

signal c: positive:=1;
-- configuration specification

for all : epl800 use entity EP1800LIB. epl800(structural);
begin

~- use named association interface list. associated lists are according to
-- chip map from ALTERA Design Processor Utilization Report.

EP1: EP1800 generic map(''count. jed")

port map(pin_2=>Q(9),pin_3=>Q(10),pin_&=>Q(11),
pin_5=>Q(12),pin_6=>Q(13),pin_7=>Q(14),
pin_8=>Q(15),pin_9=>Q(16),pin_10=>Q(1),
pin_11=>Q(2),pin_12=>Q(3),pin_13=>Q(7),
pin_16=>DNUP,pin_17=>CLOCK,pin_19=>D(8),
pin_20=>D(9),pin_21=>D(10),pin_22=>D(11),
pin_23=>D(1),pin_24=>D(2),pin_25=>D(3),
pin_26=>D(7),pin_48=>D(12),pin_49=>D(13),
pin_50=>D(14),pin_51=>D(15),pin_53=>CLOCK,
pin_54=>D(16),pin_55=>LOAD,pin_56=>RESET,
pin_57=>Q(4),pin_58=>Q(5),pin_59=>Q(6),
pin_60=>Q(8),pin_66=>D(4),pin_67=>D(5),
pin_68=>D(6));

CLOCK_GENERATOR: process(ck)

begin
ck<= not ck after delay*ns;

103

CLOCK<= bit_to_tri(ck);
end process CLOCK_GENERATOR;

DNUP <= '1'; . -- up counter.
RESET'<T '1' when c = 1 else

LOAD'<? Y1' when c = 2 else
0
c<= c+l after delay*ns;

TERMINATE: process(ck)
begin
assert (NOW /= term_sim*delay*ns)
report "simulation is done.";
end process TERMINATE;

104

DEC-05-1988 17:19:44 VHDL Report Generator PAGE 1
Vhdl Simulation Report
Kernel Library Name: <<SHU>>TEST_COUNT
Kernel Creation Date: NOV-24-1988
Kernel Creation Time: 14:37:26
Run Identifer: 1
Run Date: NOV-24-1988
Run Time: 14:37:26
Report Control Language File: TEST_EP1800.RCL
Report Output File : TEST_COUNT.RPT
Max Time: 9223372036854775807
Max Delta: 2147483646
Report Control Language :
simulation_report COUNT_UP is
begin
page_width is 72;
select_signal : "RE"=>RESET;
select_signal : "clk"=>CLOCK;
select_signal : "LO"=>LOAD;
select_signal : "DNUP"=> DNUP;
select_signal : Q;
sample_signals by_event in ns;
end;
Report Format Information :
Time is in NS relative to the start of simulation
Time period for report is from O NS to End of Simulation
Signal values are reported by event (' ' indicates no event)

105

DEC-05-1988 17:19:44 VHDL Report Generator PAGE 2

TIME |----===cccccrcmceccanann- SIGNAL NAMES---s==c-ccmmaccncananmann
(NS) RE clk LO DNUP Q(1 TO 16)

0 :o' 'o' o' o' B O1010,01818101016:10161610;F[0[6A8
+1 1
55 "00000000UUUUUUUU"
70
+1 "000000000000UUUL"
75 "0000000000000000"
1022 vov lll lll
2000
+1 'Ol |0|
3000
+1 "1’
3019 ""1000000000000000"
4000
+1 o'
5000
+1 lli
5019 ""0100000000000000"
6000
+1 'o'
7000
+1 "1
7019 ""1100000000000000"
8000
+1 'o'
9000
+1 "1'
9019 "0010000000000000"
10000
+1
11000
+1
11019
12000
+1
13000
+1
13019
14000
+1
15000
+1
15019
16000
+1
17000
+1
17019
18000

"1010000000000000"

"0110000000000000"

"1110000000000000"

"'0001000000000000"

106

107

"1001000000000000"

| APPENDIX C. EXAMPLES OF SIGNAL SELECT FILE AND SIGNAL
MAP FILE

A. SIGNAL SELECT FILE

-~ selected trace signals for test_epl800 are
: RESET;

: CLOCK;

: LOAD;

: DNUP;

QG

108

B. SIGNAL MAP OF THE TEST_EP3 MODEL
DEC-13-1988 14:26:12

CLOCK
COUNT ;
INPUT(1 TO 10) ;
I0(1 TO 8) ;

PIN

PIN

PIN_
PIN_

IO INPUT :

/EP1 :

JEP1 :
/JEP1 :
JEP1 :
/EP1 :
/EP1 :
/EP1 :
JEP1 :
/EP1 :
/EP1 :
/EP1 :
JEP1 :
/EP1 :
/EP1 :
/EP1 :
JEP1 :
/EP1 :
/EP1 :
JEP1 :
/JEP1 :
/EP1 :
JEP1 :
/EP1 :
/EP1 :
JEP1 :
JEP1 :

_15
PIN_
PIN_
PIN_
PIN_
PIN_
PIN_
PIN_
PIN_
PIN_
PIN_

_1
PIN_
PIN_
PIN_
PIN_

11
12
13
14

16
17
18
19
2
3
4
5
6
7
8
9

We wr Ve we W We We Wwe we

W W W Wws W we Wwe wa

CLEAR ;

KERNEL =

GUARD ;

FEEDBACK(I TO 8) ;
LOCAL(1 TO 8) ;
MACRO_IN(1 TO 18) ;
OELOC(1 TO 8) ;
ORLOC(1 TO 8) ;
OUTPUT(1 TO 8) ;

PIN_1 ;
PIN_11
PIN_12
PIN_13
PIN_14
PIN_15
PIN_16
PIN_17
PIN_18
PIN_19
PIN_2 ;
PIN_3
PIN_G4
PIN_S
PIN_6
PIN_7
PIN_8
PIN_9
PRESET ;

wr we we We W we we

/JEP1.CON(1) :

We W W W e we we We W

CLK'TYPE_CONV_79_C :

VHDL Simulator
SIGNAL NAME MAP
<<SHU>>TEST_EP3

109

PAGE 1

JEP1.CON(1) : PIN_1'DELAYED_79_A ;
/EP1. CON(l)/CONTROL CLEAR ;
/EP1.CON(1)/CONTROL : CLK ;
/EP1.CON(1)/CONTROL : FEEDBACK H
/EP1.CON(1)/CONTROL : IO_PIN ;
/EP1.CON(1)/CONTROL : OR_IN ;
DEC-13-1988 14:26:12 VHDL Simulator PAGE 2
SIGNAL NAME MAP

KERNEL = <<SHU>>TEST_EP3
/EP1. CON(1)/CONTROL : OUTPUT ;
/EP1.CON(1)/CONTROL : PRESET ;
/EP1.CON(1)/CONTROL : Q_LOC ;
/EP1. CON(1)/CONTROL/D1 : CK ;
/EP1. CON(1)/CONTROL/D1 : CLEAR ;
/EP1.CON(1)/CONTROL/D1 : D ;
/EP1. CON(1)/CONTROL/D! : PRESET ;
/EP1.CON(1)/CONTROL/D1 : Q ;
/EP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_26_5 ;
/EP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_26_7 ;
/EP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_26_7'STABLE_26_9 ;
/EP1.CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_43_D ;
/EP1.CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_&B_F H
JEP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_43_F'STABLE_43_H ;
/EP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_52_1I ;
/EP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_S2_I'STABLE_S52 K ;
/EP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_13_1 ;
/EP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_18_3 ;
/EP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_35_B ;
JEP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_52_L ;
/EP1.CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_S59_M ;
/EP1.CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : D'STABLE_18_2 ;
JEP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : D'STABLE_26_& ;
/EP1. CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : GUARD ;
/EP1.CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : PRESET'STABLE_35_A ;
JEP1.CON(1)/CONTROL/D1. EDGE_TRIGGERED_D : PRESET'STABLE_&43_C ;
/EPl.CON(l)/CONTROL/Dl.EDGE_TRIGGERED_D : 5
/EP1.CON(2) : CLK' TYPE CONV_79_C ;
JEP1.CON(2) : PIN_1'DELAYED_79_A ;
/EP1. CON(Z)/CONTROL CLEAR ;
/EP1.CON(2)/CONTROL : CIK ;
/EP1.CON(2)/CONTROL : FEEDBACK ;
/EP1.CON(2)/CONTROL : IO_PIN ;
JEP1.CON(2)/CONTROL : OR_IN ;
/JEP1.CON(2)/CONTROL : OUTPUT ;
JEP1.CON(2)/CONTROL : PRESET ;
/EP1.CON(2)/CONTROL : Q_LOC ;
/EP1.CON(2)/CONTROL/D1 : CK ;
/EP1.CON(2)/CONTROL/D1 : CLEAR ;
/EP1.CON(2)/CONTROL/D1 : D ;
/EP1.CON(2)/CONTROL/D1 : PRESET ;
JEP1.CON(2)/CONTROL/D1 : Q ;
/EP1. CON(2)/CONTROL/D1. EDGE _TRIGGERED_D : CK'DELAYED_26_5 ;
/EP1.CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_26_7 ;
/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_26_7'STABLE_26_9 ;
JEP1. CON{2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_43_D ;

/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_43_F ;
/EP1.CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_43_F'STABLE_43_H ;
/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_S2_I ;

/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_52_I'STABLE_52_K ;
/EP1.CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_13_1 ;

/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_18_3 ;
/EP1.CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_35_B ;
/EP1.CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_52_L ;

/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_59_M ;
/EP1.CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : D'STABLE_18_2 ;

NEC-13-1988 14:26:12

VHDL Simulator

SIGNAL NAME MAP
KERNEL = <<SHU>>TEST_EP3

111

PAGE 3

JEP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : D'STABLE_26_4 ;
JEP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : GUARD ;

/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : PRESET'STABLE_35_A ;
/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : PRESET'STABLE_43_C ;
/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D : S ;

/EP1.CON(3) : CLK'TYPE_CONV_79_C ;

JEP1.CON(3) : PIN_1'DELAYED_79_A ;

JEP1.CON(3)/CONTROL : CLEAR ;

/EP1.CON(3)/CONTROL : CIK ;

JEP1. CON(3)/CONTROL - FEEDBACK ;

JEP1.CON(3)/CONTROL : IO_PIN ;

JEP1.CON(3)/CONTROL : OR_IN ;

JEP1. CON(3)/CONTROL : OUTPUT ;

/EP1. CON(3)/CONTROL : PRESET ;

JEP1.CON(3)/CONTROL : Q_LOC ;

, /EP1. CON(3) /CONTROL/D1 : CK ;

,%P1.CON(3)/CONTROL/D1 : CLEAR ;

JEP1.CON(3)/CONTROL/D1 : D ;

/EP1. CON(3)/CONTROL/D1 : PRESET ;

JEP1. CON(3)/CONTROL/D1 : Q ;

JEP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_26_5 ;
/EP1.CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_26_7 ;
/EP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_26_7'STABLE_26_9 ;
JEP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_43_D ;
JEP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_43_F ;
JEP1.CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_43_F'STABLE.43_H ;
JEP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_52_I ;
/EP1.CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'DELAYED_52_I'STABLE_52_K ;
JEP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_13_1 ;
JEP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_18_3 ;
JEP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_35_3B ;
JEP1, CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_52_L ;
/EP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE_59_M ;
/EP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : D'STABLE_18_2 ;
JEP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : D'STABLE_26_4 ;
JEP1.CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : GUARD ;

JEP1. CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : PRESET'STABLE_35_A ;
/EP1.CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : PRESET'STABLE_43_C ;
JEP1.CON(3)/CONTROL/D1. EDGE_TRIGGERED_D : S ;

JEP1.CON(4) : CLK'TYPE_CONV_79_C ;

JEP1.CON(4) : PIN_1'DELAYED_79_A ;

JEP1.CON(4)/CONTROL : CLEAR ;

/EP1.
/EP1.
/EPL.
/EP1.
/EP1.

/EP1.
/EP1.
/EP1.
/EPL.

/EP1.
/EP1.
/EP1.
/EP1.
/EP1.

CON(4)/CONTROL :
CON(4)/CONTROL :
CON(4)/CONTROL :
CON(4)/CONTROL :
CON(4)/CONTROL :
CON(4&4) /CONTROL :
CON(4)/CONTROL :

CON(4)/CONTROL/D1 :
CON(4)/CONTROL/D1 :
CON(4)/CONTROL/D1 :
CON(4)/CONTROL/D1 :
CON(4)/CONTROL/D1 :
CON(4)/CONTROL/D1.
CON(4)/CONTROL/D1.

DEC-13-1988 14:26:12

/EP1.
/EP1.
/EPL1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.

/EP1.
/EP1L.
/EP1.

JEP1.
/EP1.
JEP1.
JEP1.

/JEP1.
/EPL.
/EP1.

/EP1.
/EP1.
/EP1.
/EP1L.

/EP1.
/EP1.
/EP1.
/EP1.

JEPL.
JEP1.
JEP1.
/EP1.
JEP1.
/EP1.
JEP1.
/EPL.
JEPL.

CON(4)/CONTROL/D1.
CON(4)/CONTROL/D1.
CON(4)/CONTROL/D1.
CON(4)/CONTROL/D1.
CON(4) /CONTROL/D1.
CON(4)/CONTROL/D1.
CON(4)/CONTROL/D1.
CON(4)/CONTROL/D1.
CON(4)/CONTROL/D1.
CON(4) /CONTROL/D1.
CON(4)/CONTROL/D1.
CON(4)/CONTROL/D1.
CON(4) /CONTROL/D1.

CON(4)/CONTROL/D1

CON(4)/CONTROL/D1.
CON(4)/CONTROL/D1.

CON(A)/CONTROL/DI
CON(5) : CLK' TYPE
CON(5) : PIN_1'DE
CON(S)/CONTROL :
CON(5)/CONTROL :
CON(5)/CONTROL :
CON(5)/CONTROL :
CON(5)/CONTROL :
CON(5)/CONTROL :
CON(5) /CONTROL :
CON(5)/CONTROL :

CON(5)/CONTROL/D1 :
CON(5)/CONTROL/D1 :
CON(5)/CONTROL/D1 :
CON(5)/CONTROL/D1 :
CON(5)/CONTROL/D1 : Q ;

.EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :

CON(5)/CONTROL/D1

CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.

CLX ;
FEEDBACK ;
I0_PIN ;
OR_IN ;
OUTPUT ;
PRESET ;
Q_LOC ;

CK ;
CLEAR ;
D ;
PRESET ;

Q;
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :

CK'DELAYED_26_5 ;
CK'DELAYED_26_7 ;

VHDL Simulator
SIGNAL NAME MAP

KERNEL =

CONV_79_C ;
LAYED_79_A ;
CLEAR ;

CIK ;
FEEDBACK ;
IO_PIN ;
OR_IN ;
QUTPUT ;
PRESET ;
Q_LOC ;

CK ;
CLEAR ;
D ;
PRESET ;

EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
. EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
.EDGE_TRIGGERED_D :

<<SHU>>TEST_EP3

PAGE 4

CK'DELAYED_26_7'STABLE_26_9 ;

CK'DELAYED_43_D ;
CK'DELAYED_43_F ;

CK'DELAYED_43_F'STABLE_43_H ;

CK'DELAYED_52_1 ;

CK'DELAYED_52_1'STABLE_S52_K ;

CK'STABLE_13_1 ;
CK'STABLE_18_3 ;
CK'STABLE_35_B ;
CK'STABLE_52_L ;
CK'STABLE_59_M ;
D'STABLE_18_2 ;
D'STABLE_26_4 ;
GUARD ;

PRESET'STABLE_35_A ;

PRESET'STABLE_43_C ;

S

CK'DELAYED_26_5 ;
CK'DELAYED_26_7 ;

CK'DELAYED_26_7'STABLE_26_9 ;

CK'DELAYED_43_D ;
CK'DELAYED_43_F ;

CK'DELAYED_43_F'STABLE_43_H ;

/EP1.
/EP1.
/EPL.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.

/EP1
/EP1

/EP1

CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
CON(5)/CONTROL/D1.
. CON(5)/CONTROL/D1.
. CON(5)/CONTROL/D1
/EP1.
/EP1.
/EP1.
/EP1.
/EPL.

CON(S)/CONTROL/DI.

CON(6) : CLK' TYPE
CON(6) : PIN_1'DE
CON(6)/CONTROL :
CON(6)/CONTROL :

. CON(6)/CONTROL :

DEC-13-1988 14:26:12

/EP1L.
/EP1.
/EP1.
/EP1.
/EP1.

/EP1
/EP1

JEP1.
JEP1.
/EPL.
/EP1.
/JEP1.
/EP1.
JEP1.
JEP1.
JEP1.
JEP1.
JEP1.
/EP1.
JEP1.
/EP1.
/JEP1.
/EP1.
/EP1.
/EP1.
JEP1.
/EP1.
/EP1.
JEP1.
/EP1.
JEP1.
/EP1.
/JEPL.
JEPL.

CON(6)/CONTROL :
CON(6)/CONTROL :
CON(6)/CONTROL :
CON(6)/CONTROL :
CON(6)/CONTROL :

.CON(6)/CONTROL/D1
. CON(6)/CONTROL/D1 :
CON(6)/CONTROL/D1 :
CON(6)/CONTROL/D1 :
CON(6)/CONTROL/D1 :
CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.

CON(6)/CONTROL/D1

CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.

CON(6)/CONTROL/D1

CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.

CON(6)/CONTROL/D1

CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.
CCN(6)/CONTROL/D1.
CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.
CON(6)/CONTROL/D1.

CON(7) : CLK' T&PE
CON(7) : PIN_1'DE
CON(7)/CONTROL :
CON(7)/CONTROL :
CON(7)/CONTROL :

_CONV_79_C ;
TAYED_79_A ;
CLEAR ;

CLK ;
FEEDBACK ;

VHDL Simulator

EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
. EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :

CK'DELAYED_52_1 ;
CK'DELAYED_52_I'STABLE_52_K ;
CK'STABLE_13_1 ;
CK'STABLE_18_3 ;
CK'STABLE_35_B ;
CK'STABLE_52_L ;
CK'STABLE_59_M ;
D'STABLE_18_2 ;
D'STABLE_26_4 ;
GUARD ;
PRESET'STABLE_35_A ;
PRESET'STABLE_43_C ;
S ;

PAGE 5

SIGNAL NAME MAP

KERNEL =

IO_PIN ;
OR_IN ;
OUTPUT ;
PRESET ;
Q_LOC ;
CK ;
CLEAR R
D ;
PRESET ;

CONV_79_C ;
LAYED 79_A
CLEAR ;

CLK ;
FEEDBACK ;

Q;
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
.EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
. EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
.EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :

<<SHU>>TEST_EP3

CK'DELAYED_26_5 ;
CK'DELAYED_26_7 ;
CK'DELAYED_26_7'STABLE_26_9 ;
CK'DELAYED_43_D ;
CK'DELAYED_43_F ; - .-
CK'DELAYED_43_F'STABLE_43_H ;
CK'DELAYED_52_1 ;
CK'DELAYED_52_I'STABLE_S52_K ;
CK'STABLE_13_1 ;
CK'STABLE_18_3 ;
CK'STABLE_35_B ;
CK'STABLE_52_L ;
CK'STABLE_59_M ;
D'STABLE_18_2 ;

D'STABLE_26_4 ;

GUARD ;

PRESET'STABLE_35_A ;
PRESET'STABLE_43_C ;

S

/EPL.
/EPL.
/EP1.

JEP1.
/EP1.
/EP1.
/EP1.

/EP1.
/EP1.
JEP1.
JEP1.
JEP1.
/EPL.
JEP1.
JEP1.
/EP1.
JEP1.
JEP1.
/EP1.
/EPL1.
JEP1.
/EP1.

CON(7)/CONTROL :
CON(7)/CONTROL :
CON(7)/CONTROL :
CON(7)/CONTROL :
CON(7)/CONTROL :
CON(?)/CONTROL/DI

CON(7)/CONTROL/D1 :
CON(7)/CONTROL/D1 :
CON(7)/CONTROL/D1 :
CON(7)/CONTROL/D1 :
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.

DEC-13~1988 14:26:12

JEP1.
/EPL1.
/EP1.
/EP1.
JEP1.
JEP1.
/EP1.
JEP1.

/EP1.

/EPL.

/EP1.
/EPL.

/EP1L.
/EP1.
/EP1.

/EPL.
/EPL.
/EP1.
/EP1.

/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EPL.
/EP1.
/EP1.
/EP1.
/EP1.
/EPL.

CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.
CON(7)/CONTROL/D1.

CON(8) : CLK' TYPE
CON(8) : PIN_1'DE
CON(S)/CO\TROL
CON(8)/CONTROL :
CON(8) /CONTROL :
CON(8)/CONTROL :
CON(8)/CONTROL :
CON(8)/CONTROL :
CON(8)/CONTROL :
CON(8)/CONTROL :
CON(8)/CONTROL/D1 :

CON(8)/CONTROL/D1 :
CON(8)/CONTROL/D1 :
CON(8)/CONTROL/D1 :
CON(8)/CONTROL/D1 :
CON(8)/CONTROL/D1.
CON(8)/CONTROL/D1.
CON(8)/CONTROL/D1.
CON(8) /CONTROL/D1.
CON(8)/CONTROL/D1.
CON(8)/CONTROL/D1.
CON(8)/CONTROL/D1.
CON(8)/CONTRCL/D1.

Q_LOC ;

CLEAR
D ;
PRESET H

Q;
EDGE_TRIGGERED D
EDGE_TRIGGERED
EDGE_TRIGGERED D
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED D
EDGE_TRIGGERED
EDGE_TRIGGERED D
EDGE_TRIGGERED,
EDGE_TRIGGERED

EDGE_TRIGGERED_ D :
EDGE_TRIGGERED_D :

CK'DELAYED 26_5 ;
CK'DELAYED_26 75
CK'DELAYED_26
CK'DELAYED 43 D
CK'DELAYED_4
CK'DELAYED 43
CK'DELAYED_52
CK'DELAYED_52
. CK'STABLE_13_1 ;
: CK'STABLE_18_3 ;
CK'STABLE_35_B ;
CK'STABLE_52_L ;

I,

'

VHDL Simulator
SIGNAL NAME MAP
KERNEL = <<SHU>>TEST_EP3

_CONV_79_C ;
LAYED_79_A ;
CLEAR
CLK ;
FEEDBACK 5
IO_PIN ;
OR_IN ;
OUTPUT ;
PRESET ;
Q_LoC ;
CK ;
CLEAR H
D ;
PRESET ;

114

EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :

Q;
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :

CK'STABLE_59_M ;
D'STABLE_18_2 ;
D'STABLE_26_4 ;
GUARD ;

PRESET'STABLE_35_A ;
PRESET'STABLE_43_C ;

S

CK'DELAYED_26_5 ;
CK'DELAYED_26_7 ;

7'STABLE_26_9 ;

F STABLE_&S_H ;
I'STABLE_52_K ;

PAGE 6

CK'DELAYED_26_7'STABLE_26_9 ;

CK'DELAYED_43_D ;
CK'DELAYED_43_F

CK'DELAYED_43_F'STABLE_43_H ;

CK'DELAYED_52_1 ;

CK'DELAYED_52_I'STABLE_52_K ;

JEP1.
/EP1.
/EP1.
JEP1.
/EP1.
JEP1.
JEP1.
/EP1.
JEP1.
JEP1.

. CON(8)/CONTROL/D1.
. CON(8)/CONTROL/D1.

EDGE_TRIGGERED_D :
EDGE_TRIGGERED_D :

CK'STABLE_13_1 ;
CK'STABLE_18_3 ;

_35_B ;
CK'STABLE_52_L ;
CK'STABLE_S59_M ;

PRESET'STABLE_35_A ;
PRESET'STABLE_43_C ;

DEC-13-1988 14:26:12

JEP1.
JEP1.
JEP1.
/EP1.
JEP1.
JEP1.
JEP1.
JEP1.
JEP1.
JEPL.
JEP1.
JEP1.
JEP1.
/EP1.
JEPL.
/EP1.
/EP1.
JEP1.
JEP1.
/EP1.
JEP1.
/JEP1.
JEP1.
JEPL.
JEP1.
JEP1.

KERNEL = <<SHU>>TEST_EP3

. CON(8)/CONTROL/D1. EDGE_TRIGGERED_D : CK'STABLE
. CON(8)/CONTROL/D1. EDGE_TRIGGERED_D :

. CON(8)/CONTROL/D1. EDGE_TRIGGERED_D :

. CON(8) /CONTROL/D1. EDGE_TRIGGERED_D : D'STABLE_18_2 ;
. CON(8)/CONTROL/D1. EDGE_TRIGGERED_D : D'STABLE_26_4 ;
. CON(8) /CONTROL/D1. EDGE_TRIGGERED_D : GUARD ;

. CON(8)/CONTROL/D1. EDGE_TRIGGERED_D :

. CON(8)/CONTROL/D1. EDGE_TRIGGERED_D :

. CON(8) /CONTROL/D1. EDGE_TRIGGERED_D : S ;
.M(1)/MACRO : A(1 TO 18) ;

.M(1)/MACRO : EN ;

.M(l)/RECRO : EN_LOC ;

.M(1)/MACRO : LOC(1 TO 8) ;

.M(1)/MACRO : OR_OUT ;

M(1)/MACRO. P(1)/ELEMENT : P_OUT ;
M(1)/MACRO.P(1)/ELEMENT : X(1 TO 18) ;
M(1)/MACRO. P(2)/ELEMENT : P_OUT ;
M(1)/MACRO.P(2)/ELEMENT : X(1 TO 18) ;
M(1)/MACRO. P(3)/ELEMENT : P_OUT ;

M(1)/MACRO. P(3)/ELEMENT : X(1 TO 18) ;
M(1)/MACRO. P(4)/ELEMENT : P_OUT ;

M(1)/MACRO. P(4)/ELEMENT : X(1 TO 18) ;
M(1)/MACRO. P(5)/ELEMENT : P_OUT ;

M(1)/MACRO. P(5)/ELEMENT : X(1 TO 18) ;

VHDL Simulator
SIGNAL NAME MAP

M(1)/MACRO. P(6)/ELEMENT : P_OUT ;
M(1)/MACRO.P(6)/ELEMENT : X(1 TO 18) ;
M(1)/MACRO. P(7)/ELEMENT : P_OUT ;
M(1)/MACRO. P(7)/ELEMENT : X(1 TO 18) ;
M(1)/MACRO.P(8)/ELEMENT : P_OUT ;
M(1)/MACRO. P(8)/ELEMENT : X(1 TO 18) ;
M(1)/MACRO/OE : P_OUT ;

M(1)/MACRO/OE : X(1 TO 18) ;
M(2)/MACRO : A(1 TO 18) ;

M(2)/MACRO : EN ;

M(2)/MACRO : EN_LOC ;

M(2)/MACRO : LOC(1 TO 8) ;

M(2)/MACRO : OR_OUT ;

M(2)/MACRO. P(1)/ELEMENT : P_OUT ;
M(2)/MACRO. P(1)/ELEMENT : X(1 TO 18) ;
M(2)/MACRO. P(2)/ELEMENT : P_OUT ;
M(2)/MACRO.P(2)/ELEMENT : X(1 TC 18) ;
M(2)/MACRO. P(3)/ELEMENT : P_OUT ;
M(2)/MACRO. P(3)/ELEMENT : X(1 TO 18) ;
M(2)/MACRO. P(4)/ELEMENT : P_OUT ;
M(2)/MACRO. P(4)/ELEMENT : X(1 TO 18) ;
M(2)/MACRO. P(5)/ELEMENT : P_OUT ;
M(2)/MACRO. P(5)/ELEMENT : X(1 TO 18) ;
M(2)/MACRO. P(6)/ELEMENT : P_OUT ;
M(2)/MACRO. P(6)/ELEMENT : X(1 TO 18) ;
M(2)/MACRO. P(7)/ELEMENT : P_OUT ;

PAGE 7

/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EPL.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.

M(2)/MAGRO. P(7)/ELEMENT : X(1 TO 18) ;
M(2)/MACRO. P(8)/ELEMENT :
M(2)/MACRO. P(8)/ELEMENT : X(1 TO 18) ;

M(2)/MACRO/OE : P_OUT -

M(2)/MACRO/OE : X(1 TO 18) ;
M(3)/MACRO : A(1 TO 18) ;

M(3)/MACRO : EN ;

M73)/MACRO : EN_LOC ;

M(3)/MACRO : LOC(1 TO 8) ;

M(3)/MACRO : OR_OUT ;

M(3)/MACRO. P(1)/ELEMENT : P_OUT ;
M(3)/MACRO. P(1)/ELEMENT : X(1 TO 18) ;
M(3)/MACRO. P(2)/ELEMENT : P_OUT ;
M(3)/MACRO. P(2)/ELEMENT : X(1 TO 18) ;
M(3)/MACRO. P(3)/ELEMENT : P_OUT ;
M(3)/MACRO. P(3)/ELEMENT : X(1 TO 18) ;
M(3)/MACRO. P(4)/ELEMENT : P_OUT ;
M(3)/MACRO. P(4)/ELEMENT : X(1 TO 18) ;
M(3)/MACRO. P(5)/ELEMENT : P_OUT ;
M(3)/MACRO. P(5)/ELEMENT : X(1 TO 18) ;
M(3)/MACRO. P(6)/ELEMENT : P_OUT ;
M(3)/MACRO. P(6)/ELEMENT : X(1 TO 18) ;
M(3)/MACRO. P(7)/ELEMENT : P_OUT ;
M(3)/MACRO. P(7)/ELEMENT : X(1 TO 18) ;
M(3)/MACRO. P(8)/ELEMENT : P_OUT ;
M(3)/MACRO. P(8)/ELEMENT : X(1 TO 18) ;

/EP1.M(3)/MACRO/OE : P_OUT ;

/EP1.M(3)/MACRO/OE :
/EP1.M(4)/MACRO : A(1 TO 18) ;
M(4)/MACRO :

/EP1.

EN ;

DEC-13-1988 14:26:12

/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EPL.
/EPL.
/EP1.
/EP1.
/EP1.

M(4)/MACRO :
M(4)/MACRO :
M(4)/MACRO :
M(4)/MACRO.
M(4)/MACRO.
M(4)/MACRO.
M(4)/MACRO.
M(4)/MACRO.
M(4)/MACRO.
M(4) /MACRO.
M(4)/MACRO.
M(4) /MACRO.
M(4)/MACRO.
M(4)/MACRO.
M(4)/MACRO.
M(4) /MACRO.
M(4)/MACRO.
M(4)/MACRO.
M(4)/MACRO.

EN_LOC ;

OR_OUT ;

P(1)/ELEMENT :
P(1)/ELEMENT :
P(2)/ELEMENT :
P(2)/ELEMENT :
P(3)/ELEMENT :
P(3)/ELEMENT :
P(4)/ELEMENT :
P(4)/ELEMENT :
P(5)/ELEMENT :
P(5)/ELEMENT :
P(6)/ELEMENT :
P(6)/ELEMENT :
P(7)/ELEMENT :
P(7)/ELEMENT :
P(8)/ELEMENT :
P(8)/ELEMENT :

M(4)/MACRO/OE : P_OUT ;

M(4)/MACRO/OE :
M(5)/MACRO :

LOC(1 TO 8) ;

P_OUT ;

X(1 TO 18) ;

VHDL Simulator
SIGNAL NAME MAP
KERNEL = <<SHU>>TEST_EP3

P_OUT ;

X(1 TO 18) ;

P_OUT ;

X(1 TO 18) ;

P_OUT ;

X(1 TO 18) ;

P_OUT ;

X(1 TO 18) ;

P_OUT ;

X(1 TO 18) ;

P_OUT ;

X(1 TO 18) ;

P_OUT ;

X(1 TO 18) ;

P_OUT ;

X(1 TO 18) ;

X(1 TO 18) ;
A(1 TO 18) ;

116

PAGE 8

JEP1.M(5)/MACRO : EN ;

/EP1.M(5)/MACRO : EN_LOC ;

JEP1.M(5)/MACRO : LOC(1 TO 8) ;
/JEP1.M(5)/MACRO : OR_OUT ;
/EPl.M(S)/MACRO.P(l)/ELEMENT : P_OUT ;
/EP1.M(5)/MACRO. P(1)/ELEMENT : X(1 TO 18) ;
/EP1.M(5)/MACRO. P(2) /ELEMENT : P_OUT ;
/EP1.M(5)/MACRO. P(2)/ELEMENT : X(1 TO 18) ;
/EP1.M(S5)/MACRO. P(3)/ELEMENT : P_OUT ;
/EP1.M(5)/MACRO. P(3)/ELEMENT : X(1 TO 18) ;
/EP1.M(5)/MACRO. P(4)/ELEMENT : P_OUT ;
JEP1.M(5)/MACRO. P(4)/ELEMENT : X(1 TO 18) ;
/EP1.M(5)/MACRO. P(5)/ELEMENT : P_OUT ;
JEP1.M(5)/MACRO. P(5)/ELEMENT : X(1 TO 18) ;
JEP1.M(5)/MACRO. P(6)/ELEMENT : P_OUT ;
/EP1.M(5)/MACRO. P(6)/ELEMENT : X(1 TO 18) ;
/EP1.M(5)/MACRO. P(7)/ELEMENT : P_OUT ;
/EP1.M(5)/MACRO. P(7)/ELEMENT : X(1 TO 18) ;
/EP1.M(5)/MACRO. P(8)/ELEMENT : P_OUT ;
/EP1.M(5)/MACRO. P(8)/ELEMENT : X(1 TO 18) ;
/JEP1.M(5)/MACRO/OE : P_OUT ;
/EP1.M(5)/MACRO/OE : X(1 TO 18) ;
/EP1.M(6)/MACRO : A(1 TO 18) ;
/EP1.M(6)/MACRO : EN ;

/EP1.M(6)/MACRO : EN_LOC ;

/EP1.M(6)/MACRO : LOC(1 TO 8) ;
/EP1.M(6)/MACRO : OR_OUT ;

/EP1.M(6)/MACRO. P(1)/ELEMENT : P_OUT ;
/EP1.M(6)/MACRO. P(1)/ELEMENT : X(1 TO 18) ;
/JEP1.M(6)/MACRO. P(2)/ELEMENT : P_OUT ;
/JEP1.M(6)/MACRO. P(2)/ELEMENT : X(1 TO 18) ;
/EP1.M(6)/MACRO. P(3)/ELEMENT : P_OUT ;
JEP1.M(6)/MACRO. P(3)/ELEMENT : X(1 TO 18) ;
/EP1.M(6)/MACRO. P(4)/ELEMENT : P_OUT ;

DEC-13-1988 14:26:12 VHDL Simulator

SIGNAL NAME MAP

PAGE 9

KERNEL = <<SHU>>TEST_EP3
JEP1.M(6)/MACRO. P(4)/ELEMENT : X(1 TO 18) ;
JEP1.M(6)/MACRO. P(5)/ELEMENT : P_OUT ;
/EP1.M(6)/MACRO. P(5)/ELEMENT : X(1 TO 18) ;
JEP1.M(6)/MACRO. P(6)/ELEMENT : P_OUT ;
JEP1.M(6)/MACRO. P(6)/ELEMENT : X(1 TO 18) ;
JEP1.M(6)/MACRO. P(7)/ELEMENT : P_OUT ;
JEP1.M(6)/MACRO. P(7)/ELEMENT : X(1 TO 18) ;
JEP1.M(6)/MACRO. P(8)/ELEMENT : P_OUT ;
JEP1.M(6)/MACRO. P(8)/ELEMENT : X(1 TO 18) ;
/EP1.M(6)/MACRO/OE : P_OUT ;
JEP1.M(6)/MACRO/OE : X(1 TO 18) ;
JEP1.M(7)/MACRO : A(1 TO 18) ;
JEP1.M(7)/MACRO : EN ;

JEP1.M(7)/MACRO : EN_LOC ;
JEP1.M(7)/MACRO : LOC(1 TO 8) ;
JEP1.M(7)/MACRO : OR_OUT ;

/EP1. M(7)/MACRO. P(1)JELEMENT : P_OUT ;

/EP1.

M(7)/MACRO. P(1)/ELEMENT :

X(1 TO 18)

117

/EP1.

/EP1.
/EP1.

/EPL.
/EP1.

/EP1.

/EP1
/EP1.

/EP1.
/EP1.
JEP1,
/EP1.
JEPL.

/EP1.

/EP1.
/EP1.

/EP1.

/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.
/EP1.

/EP1.

/EPL.
/EP1.

/EP1.
_/EP1
"EP1
JEP1.
/EP1.
/EP1.
/EP1.
JEP1.
JEP1.
JEP1.

DEC-13-1988 14:26:12

/EP1.M(8)/MACRO/OE :
/EP1/P :

/JEP1/P : X(1 TO

/EP1/R :

/EP1/R : X(1 TO

P_OUT ;
P_OUT ;

KERNEL = <<SHU>>TEST_EP3

18) ;

18) ;

M(7)/MACRO. P(2)/ELEMENT : P_OUT ;
M(7)/MACRO. P(2)/ELEMENT : X(1 TO 18) ;
M(7)/MACRO. P(3)/ELEMENT : P_OUT ;
M(7)/MACRO. P(3)/ELEMENT : X(1 TO 18) ;
M(7)/MACRO. P(4)/ELEMENT : P_OUT ;
M(7)/MACRO. P(4)/ELEMENT : X(1 TO 18) ;
.M(7)/MACRO. P(5)/ELEMENT : P_OUT ;
M(7)/MACRO. P(5)/ELEMENT : X(1 TO 18) ;
M(7)/MACRO. P(6)/ELEMENT : P_OUT ;
M(7)/MACRO. P(6)/ELEMENT : X(1 TO 18) ;
M(7)/MACRO. P(7)/ELEMENT : P_OUT ;
M(7)/MACRO. P(7)/ELEMENT : X(1 TO 18) ;
M(7)/MACRO. P(8)/ELEMENT : P_OUT ;
M(7)/MACRO. P(8)/ELEMENT : X(1 TO 18) ;
M(7)/MACRO/OE : P_OUT ;

M(7)/MACRO/OE : X(1 TO 18) ;
M(8)/MACRO : A(1 TO 18) ;

M(8)/MACRO : EN ;

M(8)/MACRO : EN_LOC ;

M(8)/MACRO : LOC(1 TO 8) ;

M(8)/MACRO : OR_OUT ;

M(8)/MACRO. P(1)/ELEMENT : P_OUT ;
M(8)/MACRO. P(1)/ELEMENT : X(1 TO 18) ;
M(8)/MACRO. P(2)/ELEMENT : P_OUT ;
M(8)/MACRO. P(2)/ELEMENT : X(1 TO 18) ;
M(8)/MACRO. P(3)/ELEMENT : P_OUT ;
M(8)/MACRO. P(3)/ELEMENT : X(1 TO 18) ;
M(8)/MACRO. P(4)/ELEMENT : P_OUT ;
M(8)/MACRO. P(4)/ELEMENT : X(1 TO 18) ;
. M(8)/MACRO. P(5)/ELEMENT : P_OUT ;
.M(8)/MACRO. P(S)/ELEMENT : X(1 TO 18) ;
M(8)/MACRO. P(6)/ELEMENT : P_OUT ;
M(8)/MACRO. P(6)/ELEMENT : X(1 TO 18) ;
M(8)/MACRO. P(7)/ELEMENT : P_OUT ;
M(8)/MACRO. P(7)/ELEMENT : X(1 TO 18) ;
M(8)/MACRO. P(8)/ELEMENT : P_OUT ;
M(8)/MACRO. P(8)/ELEMENT : X(1 TO 18) ;
M(8)/MACRO/OE : P_OUT ;

VHDL Simulator
SIGNAL NAME MAP

X(1 TO 18) ;

118

PAGE 10

APPENDIX D. MACRO VAX/VMS SYSTEM COMMAND

A. MACRO VAX/VMS SYSTEM COMMAND FOR EP310 MODEL

!FILE NAME: Batch (for EP310 model)
$set def [shu.vhdl. altera]

$set verify

$vls setlib shu

$vhdl eprom_pack

$mg eprom_pack

$mg/body eprom_pack

$set def [shu.vhdl. altera.ep310]
$set verify

$vls setlib ep310

$vhdl ep310_pack

Smg ep310_pack

$mg/body ep310_pack

Svhdl d_reg

$mg d_register(behavioral_2)
$vhdl p_term

Smg p_term(behavioral)

$vhdl macrocell

$mg macrocell(behavioral)

$vhdl io_control

S$mg io_control(behavioral_1)
$vhdl ep310

$mg ep310(structural)

$set def [shu.vhdl.altera.ep310. test]
Sset verify

$vls setlib shu

$vhdl test_bench

Svhdl test_ep310

$mg/top test_bench(ep310)
Sbuild/replace/ker=test_ep3 test_bench(ep310)
$sim test_ep3/param=20000000,4
$rg test_ep3 test_ep310.rcl
Sexit

119

B. MACRO VAX/VMS SYSTEM COMMAND FOR EP1800 MODEL

IFILE NAME: Batch (for EP1800 model)
$set def [shu.vhdl. altera]

$set verify

Svls setlib shu

$vhdl eprom_pack

$mg eprom_pack

Smg/body eprom_pack

$set def [shu.vhdl. altera.epl800]
S$set verify

$vls setlib ep1800

$vhdl epl800_pack

Smg epl800_pack

$mg/body epl800_pack

S$vhdl d_reg

$mg d_register(behavioral)

Svhdl p_term

$mg p_term(behavioral)

Svhdl io_control

Smg io_control(behavioral)

Svhdl local_m

$mg local_macrocell(structural)
Svhdl global_m

$mg global_macrocell(structural)
$vhdl quadrant

$mg quadrant(structural)

$vhdl epl800

$mg epl800(structural)

$set def [shu.vhdl.altera.epl800. test]
$set verify

Svls setlib shu -

Svhdl test_bench

$vhdl test_epl800

$mg/top test_bench(epl800)
Sbuild/replace/ker=test_count test_bench(epl800)
$sim test_count/para=0,20/trace=select.signal
Srg test_count test_ep1800.rcl

Sexit

120

LIST OF REFERENCES

"VHDL and Svstem Design,” in Defense Science & Electronics, Vol. 5, No. 10, pp.
49-52, October 1986.

J.R. Armstrong, “Chip-level modeling with HDLS,” in IEEE Design & Test of

Computers, pp. 8-18, Febrary 1988.

James R. Armstrong, Chip-level modeling with VHDL, pp. 90-93, Prentice Hall,

Englewood Cliffs, New Jersey, 1989.
IEEE Standard VHDL Language Reference Manual, IEEE Inc., New York, 1987.

User's Manual for the Standard VHHDL 1076 Support Enviroment/drafi;, Intermet-

rics Inc., Bethesda, Marvland, 5 August 1988.

Altera Databook second printing, Altera Corporation, Santa Clara, California, Jan-

uary 1988.

"EPLD timing simulation,” in Altera User-configurable Logic Applications

Handbook, pp. 83-95, Altera Corporation, Santa Clara, California, July 1988.

"Counter Design,” in Altera User-configurable Logic Apphcations Handbook, pp.

53-39, Altera Corporation, Santa Clara, Claifornia, January 1988,

9. Richard Goering, “Modeling strategies simplifv board-level simulation,” in Com-

puter Design, pp. 29-33, March 1988.

10.

INITIAL DISTRIBUTION LIST
No. Copics

|]

Defense Technical Information Center
Cameron Station
Alexandrna, VA 22304-6145

Librarv, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

D

Department Chairman, Code 62 1
Department of LClectrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943.5000

Professor Chin-l11wa Lee, Code G2Le 20
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943.5000

Professor Jon T. Butler, Code 62Bu l
Department of Electrical and Computer Enginecring

Naval Postgraduate School

Monterey, CA 93943-5000

Jim Armstrong i
Virginia Tech, E.E. Dept
Blacksburg, VA 24061

Luis Concha n
Electronics Technology Laboratory

WRDC:ELED

WPAFB, OI1 45433

John W, llines I
USAF

WRDC/ELED

WPAFB, Ol 45433-.6543

Paul Hunter l
NRL

Code 5305

Washington, DC 20375-506

Kim Kanzaki l
AFIT'ENG

WPAAFB

WPAFDB, Ol1 45433

11.

12.

Steven Levitan

Univ. of Pittsburgh
Dept.Elec

348 Benedum Hall
Pittsburgh, PA 15261

Carl Schaefer
Intermetrics, Inc.
4733 Bethesda Ave.
Bethesda, MD 20815

Ronald Waxman

Univ. of Virginia

Dept. of EE

Thornton [Hall
Charlottesville, VA 22903

124

